Warranty and Assistance

The **CM6 AND CM10** are warranted by CAMPBELL SCIENTIFIC, INC. to be free from defects in materials and workmanship under normal use and service for twelve (12) months from date of shipment unless specified otherwise. Batteries have no warranty. CAMPBELL SCIENTIFIC, INC.’s obligation under this warranty is limited to repairing or replacing (at CAMPBELL SCIENTIFIC, INC.’s option) defective products. The customer shall assume all costs of removing, reinstalling, and shipping defective products to CAMPBELL SCIENTIFIC, INC. CAMPBELL SCIENTIFIC, INC. will return such products by surface carrier prepaid. This warranty shall not apply to any CAMPBELL SCIENTIFIC, INC. products which have been subjected to modification, misuse, neglect, accidents of nature, or shipping damage. This warranty is in lieu of all other warranties, expressed or implied, including warranties of merchantability or fitness for a particular purpose. CAMPBELL SCIENTIFIC, INC. is not liable for special, indirect, incidental, or consequential damages.

Products may not be returned without prior authorization. The following contact information is for US and International customers residing in countries served by Campbell Scientific, Inc. directly. Affiliate companies handle repairs for customers within their territories. Please visit www.campbellsci.com to determine which Campbell Scientific company serves your country. To obtain a Returned Materials Authorization (RMA), contact CAMPBELL SCIENTIFIC, INC., phone (435) 753-2342. After an applications engineer determines the nature of the problem, an RMA number will be issued. Please write this number clearly on the outside of the shipping container. CAMPBELL SCIENTIFIC’s shipping address is:

CAMPBELL SCIENTIFIC, INC.
RMA#____
815 West 1800 North
Logan, Utah 84321-1784

CAMPBELL SCIENTIFIC, INC. does not accept collect calls.
TABLE OF CONTENTS

PDF viewers note: These page numbers refer to the printed version of this document. Use the Adobe Acrobat® bookmarks tab for links to specific sections.

<table>
<thead>
<tr>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. PREPARATION AND SITING ..</td>
</tr>
<tr>
<td>1.1 Installation Tasks ..</td>
</tr>
<tr>
<td>1.2 Tools Required ...</td>
</tr>
<tr>
<td>1.3 Siting and Exposure ...</td>
</tr>
<tr>
<td>1.4 Determining True North for Wind Vane Orientation ...</td>
</tr>
<tr>
<td>2. TOWER/TRIPOD INSTALLATION ...</td>
</tr>
<tr>
<td>2.1 Tower/Tripod Installation ...</td>
</tr>
<tr>
<td>2.2 Sensor Mounting Brackets ...</td>
</tr>
<tr>
<td>3. INSTRUMENTATION INSTALLATION ...</td>
</tr>
<tr>
<td>3.1 Enclosure, Datalogger, and Power Supply ..</td>
</tr>
<tr>
<td>3.2 Sensor Connection ...</td>
</tr>
<tr>
<td>3.3 Communication and Data Storage Peripherals ...</td>
</tr>
<tr>
<td>3.4 Sealing and Desiccating the Enclosure ..</td>
</tr>
<tr>
<td>4. SENSOR INSTALLATION ..</td>
</tr>
<tr>
<td>4.1 034A Met One Windset ..</td>
</tr>
<tr>
<td>4.2 014A Met One Wind Speed Sensor ..</td>
</tr>
<tr>
<td>4.3 024A Met One Wind Direction Sensor ...</td>
</tr>
<tr>
<td>4.4 05103 and 05305 RM Young Wind Monitors ...</td>
</tr>
<tr>
<td>4.5 03001 RM Young Wind Sentry Wind Set ..</td>
</tr>
<tr>
<td>4.6 03101 RM Young Wind Sentry Anemometer ..</td>
</tr>
<tr>
<td>4.7 LI200S Li-Cor Silicon Pyranometer/LI190SB Quantum Sensor ..</td>
</tr>
<tr>
<td>4.8 107/108 Temperature Probe ..</td>
</tr>
<tr>
<td>4.9 107B Soil Temperature Probe ...</td>
</tr>
<tr>
<td>4.10 CS500 Vaisala Temperature and RH Probe ..</td>
</tr>
<tr>
<td>4.11 HMP35C Vaisala Temperature and RH Probe ...</td>
</tr>
<tr>
<td>4.12 CS105 Vaisala Barometric Pressure Sensor ..</td>
</tr>
<tr>
<td>4.13 TE525 Texas Electronics Tipping Bucket Rain Gage ..</td>
</tr>
<tr>
<td>4.14 CS700-L Rain Gage ...</td>
</tr>
<tr>
<td>4.15 SR50 Sonic Ranging Sensor ..</td>
</tr>
<tr>
<td>4.16 CS615-L Water Content Reflectometer ..</td>
</tr>
<tr>
<td>4.17 237 Leaf Wetness Sensor ...</td>
</tr>
<tr>
<td>4.18 257 Soil Moisture Sensor ..</td>
</tr>
<tr>
<td>4.19 Wind Direction Sensor Orientation ...</td>
</tr>
<tr>
<td>5. SOFTWARE INSTALLATION ...</td>
</tr>
<tr>
<td>6. MAINTENANCE AND TROUBLESHOOTING ..</td>
</tr>
<tr>
<td>6.1 Maintenance ..</td>
</tr>
<tr>
<td>6.2 Troubleshooting ...</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

LIST OF TABLES

3.3-1 Station ID Numbers and Corresponding Switch Settings** .. 3-12
3.3-2 Station ID Numbers and Corresponding Switch Settings .. 3-14

LIST OF FIGURES

2.1-1 CM10 Weather Station ... 2-1
2.1-2 Extending the Tripod Legs ... 2-1
2.1-3 Tripod and Component Orientation ... 2-2
2.1-4 Ground Rod and Clamp ... 2-2
2.1-5 Tripod Ground Clamp .. 2-3
2.2-1 019ALU Crossarm and Lightning Rod ... 2-4
2.2-2 Gill Radiation Shield .. 2-4
2.2-3 015 Pyranometer Mounting Arm ... 2-4
2.2-4 025 Pyranometer Crossarm Stand ... 2-4
3.1-1 ENC 12/14 Enclosure on CM6/CM10 .. 3-1
3.1-2 ENC 12/14 Enclosure on UT10 ... 3-1
3.1-3 ENC 16/18 Enclosure on UT30 ... 3-1
3.1-4 21X Mounted Inside of the ENC 12/14 Enclosure ... 3-2
3.1-5 21X Alkaline Batteries ... 3-2
3.1-6 21XL Rechargeable Batteries .. 3-3
3.1-7 BPALK 12 Volt Power Supply .. 3-3
3.1-8 PS12LA 12 Volt Power Supply ... 3-4
3.1-9 MSX10 Solar Panel .. 3-4
3.2-1 Routing and Wiring Sensor Leads to the Datalogger ... 3-5
3.3-1 SM192/SM716 Storage Module ... 3-6
3.3-2 DC112 Modem with 6362 Surge Protector ... 3-7
3.3-3 COM100 Cellular Transceiver .. 3-7
3.3-4 SRM-5A and SC932 at Datalogger ... 3-9
3.3-5 SRM-5A Wiring .. 3-10
3.3-6 RF95 RF Modem and RF100/RF200 Transceiver ... 3-11
3.3-7 RF232 Base Station Installation .. 3-13
3.3-8 MD9 Multidrop Interface .. 3-13
3.3-9 MD9 Multidrop Interface at the Computer ... 3-15
3.4-1 Enclosure Supply Kit ... 3-16
4.1-1 Met One 034A Wind Speed and Direction Sensor ... 4-1
4.1-2 Met One 014A Wind Speed Sensor .. 4-1
4.1-3 Met One 024A Wind Direction Sensor .. 4-2
4.4-1 05103 RM Young Wind Monitor ... 4-2
4.5-1 03001 Mounted to the Mast ... 4-3
4.5-2 03001 Mounted to 019ALU Crossarm .. 4-3
4.6-1 03101 RM Young Wind Sentry Anemometer .. 4-3
4.7-1 Li200S/Li190SB and Li2003S Leveling Fixture .. 4-4
4.8-1 107 Temperature Probe ... 4-4
4.10-1 CS500 Temperature and RH Probe .. 4-5
4.11-1 HMP35C Vaisala Temperature and RH Probe ... 4-6
4.12-1 CS105 Vaisala Barometric Pressure Sensor in a Custom Weather Station Enclosure 4-6
4.12-2 CS105MD Vaisala Barometric Pressure Sensor in a MetData1 Enclosure 4-6
4.13-1 TE525 Texas Electronics Rain Gage ... 4-7
4.14-1 CS700-L Rain Gage and CM100 Mounting Bracket .. 4-7
4.15-1 SR50 Sonic Ranging Sensor .. 4-8
4.16-1 CS615 Water Content Reflectometer with CS615G Probe Insertion Guide 4-8
4.17-1 237 Leaf Wetness Sensor ... 4-9
4.18-1 257 Soil Moisture Sensor ... 4-9
4.19-1 Magnetic Declination for the Contiguous United States .. 4-10
4.19-2 Declination Angles East of True North Are Subtracted From 0 to Get True North 4-11
4.19-3 Declination Angles West of True North Are Added to 0 to Get True North 4-11
SECTION 1. PREPARATION AND SITING

These guidelines apply to several different Campbell Scientific weather stations.

1.1 INSTALLATION TASKS

1.1.1 INDOORS

- Immediately upon receipt of your shipment…

 ⇒ Open shipping cartons.
 ⇒ Check contents against invoice. Contact CSI immediately about any shortages.

- Several days prior to the planned installation date…

 ⇒ Collect tools and site information (Section 1)
 ⇒ Assemble datalogger, communications device, and power supply in enclosure (Section 3)
 ⇒ Install datalogger support software on PC (Section 5)
 ⇒ Establish communications between the datalogger and the PC (Section 5)
 ⇒ Program datalogger, test sensors, and retrieve data (Section 5)
 ⇒ Trial run the tower / tripod installation, assembling as much as possible (Section 2)
 ⇒ Repackage equipment for transport to the field site

1.1.2 OUTDOORS

- Locate suitable site (Section 1)

- Prepare tower or tripod base (Section 2)

- Tripod and UT10 (3 meter tower) tower stations:
 ⇒ Raise tripod or tower (Section 2)

- UT30 (10 meter tower) tower stations:
 ⇒ Install 3 to 10 meter level sensors (Section 4)
 ⇒ Raise tower (Section 2)
 ⇒ Install instrumentation enclosure (Section 3)
 ⇒ Install 0 to 3 meter level sensors (Section 4)

- ET101 / ET106 ET Stations:
 ⇒ Place instrumentation enclosure low on the ET Tower (Section 3)
 ⇒ Install sensor option (Section 4)
 ⇒ Slide enclosure to top of tower and secure with correct orientation (Section 3)

1.2 TOOLS REQUIRED

Tools required to install and maintain a weather station are listed below.

1.2.1 TOOLS FOR TOWER INSTALLATION

All Towers
- Shovel
- Rake
- Open end wrenches: 3/8", 7/16", ½", (2) 9/16"
- Magnetic compass
- 6' Step ladder

CM6/CM10
- Tape measure (12’)
- Level (12” to 24”)
- Small sledge hammer
- Teflon tape or pipe dope
- Allen hex wrench (5/64)
SECTION 1. PREPARATION AND SITING

UT10
- Tape measure (12' to 20')
- Level (24' to 36')
- Pick or digging bar
- Claw Hammer
- Materials for concrete form:
 - Hand saw
 - (4) 12" wood stakes
 - (1) 2"x 4"x 8' piece of lumber
 - (8) 8p double-head nails
 - (8) 16p double-head nails
- Concrete trowels
- (2) 1 to 1.5" thick x 24" boards to support base above forms (optional)
- Concrete (0.4 cubic yards)

ET Tower
- Tape measure (12' to 20')
- Claw hammer
- Level (24' to 36')
- Hand saw
- Materials for concrete form:
 - (4) 1" x 2" x 12" stakes
 - (2) 2" x 4"x 96" lumber
 - (12) 8p double-head nails
 - (8) 16p double-head nails
 - 20 ft form wire
- ½ Yard concrete
- Concrete trowel, edger
- Electrical Fish tape or 20 feet of small diameter rope
- Wheelbarrow

UT30
- Tape measure (12' and 20')
- Nut driver (3/8')
- Level (36' to 48')
- Small sledge hammer
- Pliers
- Tie wire
- Climbing harness
- Hard hat
- Haul rope (50')
- Non-stretch line (20')
- Wire rope cutters
- Materials for B18 Base and UTEYE Anchors:
 - (4) Wood stakes 12"
 - Pick or digging bar
 - Concrete form materials (2"x 4" lumber, stakes, saw, hammer, nails, etc.)
 - Concrete trowel and edger

Materials for UTDUK Duckbill Anchors
- Sledgehammer
- Highlift jack
- Chain (to attach jack to anchor loops)

Materials for RFM18 Base:
- (3) anchors appropriate for mounting surface
- (3) bolts and washers to secure base to anchors

1.2.2 TOOLS FOR INSTRUMENTATION AND MAINTENANCE

All Towers
- Lock and key for enclosure
- Magnetic declination angle (Section 4)
- Magnetic compass
- Straight bit screwdrivers (small, medium, large)
- Phillips-head screwdrivers (small, medium)
- Small diagonal side-cuts
- Needle-nose pliers
- Wire strippers
- Pocket knife
- Calculator
- Volt / Ohm Meter
- Electrical Tape
- Step ladder (6')
- Datalogger prompt sheet (Section 6)
- Station manuals
- Station log and pen
- Open end wrenches: 3/8", 7/16", ½", (2) 9/16"
- Socket wrench and 7/16" deep well socket
- Adjustable wrench
- Pliers
- Conduit and associated tools (as required)
- Felt-tipped marking pen
- Claw hammer
- Pipe wrench (12")

CM6/CM10
- Tape measure (12')
- Level (12" to 24")
- Teflon tape or pipe dope

UT10
- Tape measure (12' to 20')
- 3/8" nut driver
- Level (24' to 36")
- Teflon tape or pipe dope
- (12) ¼" washers (for the 015 Crossarm stand only)
- Allen wrench set
SECTION 1. PREPARATION AND SITING

1.3 SUPPLIES FOR POWER AND COMMUNICATIONS OPTIONS

AC Power
Wire, conduit, and junction boxes as needed

Phone Modem
Hayes compatible calling modem for PC
Phone line to weather station or junction box

Short-Haul Modem
4 Conductor communications cable from PC to weather station or junction box
6’ copper ground rod and clamp for PC surge protection (optional)

1.3.1 WIND SPEED AND DIRECTION

Wind sensors should be located over open level terrain, and at a distance of at least ten times (EPA) the height of any nearby building, tree or other obstruction, as illustrated in Figure 1.3-1.

Standard measurement heights:
3.0 m ± 0.1 m recommended (AASC)
2.0 m ± 0.1 m, 10.0 m ± 0.5 m optional (AASC)
10.0 m (WMO and EPA)

1.3.2 TEMPERATURE AND RELATIVE HUMIDITY

Sensors should be located over an open level area at least 9 m (EPA) in diameter. The surface should be covered by short grass, or where grass does not grow, the natural earth surface. Sensors should be located at a distance of at least four times the height of any nearby obstruction and at least 30 m (EPA) from large paved areas. Sensors should be protected from thermal radiation, and adequately ventilated.

Situations to avoid include:
- large industrial heat sources
- rooftops
- steep slopes
- sheltered hollows
- high vegetation
- shaded areas
- swamps
- areas where snow drifts occur
- low places holding standing water after rains

Standard measurement heights:
1.5 m ± 1.0 m (AASC)
1.25 - 2.0 m (WMO)
2.0 m temperature (EPA)
2.0 m and 10.0 m for temperature difference (EPA)

1.3.3 PRECIPITATION

A rain gage should be sited on level ground that is covered with short grass or gravel. In open areas, the distance to obstructions should be two to four times (EPA, AASC) the height of the obstruction.

The height of the opening should be as low as possible, but should be high enough to avoid splashing from the ground. Wind shields, such as those used by the National Weather Service, are recommended for open areas.
Collectors should be heated, if necessary, to properly measure frozen precipitation. The gage must be mounted above the average level of snow accumulation in areas that experience significant snowfall.

Standard measurement heights:
- $1.0 \text{ m} \pm 1.0 \text{ cm} \text{ (AASC)}$
- $30.0 \text{ cm} \text{ minimum (WMO, EPA)}$

1.3.4 SOLAR RADIATION

Pyranometers should be located to avoid shadows on the sensor at any time. Mounting it on the southern most (northern hemisphere) portion of the weather station will minimize the chance of shading from other weather station structures. Reflective surfaces and sources of artificial radiation should be avoided. The height at which the sensor is mounted is not critical.

1.3.5 SOIL TEMPERATURE

The measurement site for soil temperature should be at least 1 m^2 and typical of the surface of interest. The ground surface should be level with respect to the immediate area (10 m radius).

Standard measurement depths:
- $10.0 \text{ cm} \pm 1.0 \text{ cm} \text{ (AASC)}$
- $5.0 \text{ cm}, 10.0 \text{ cm}, 50.0 \text{ cm}, 100.0 \text{ cm (WMO)}$

![FIGURE 1.3-1. Effect of Structure on Wind Flow](image-url)
1.4 DETERMINING TRUE NORTH FOR WIND VANE ORIENTATION

Magnetic declination, or other methods to find True North, should be determined prior to installing the weather station. True North is usually found by reading a magnetic compass and applying the correction for magnetic declination\(^*\); where magnetic declination is the number of degrees between True North and Magnetic North. Magnetic declination for a specific site can be obtained from a USFA map, local airport, or through an internet service called NSSDC CGM (Section 1.4.1). A general map showing magnetic declination for the contiguous United States is shown in Figure 1.4-1.

Declination angles east of True North are considered negative, and are subtracted from 0 degrees to get True North as shown Figure 1.4-2. Declination angles west of True North are considered positive, and are added to 0 degrees to get True North as shown in Figure 1.4-3. For example, the declination for Logan, Utah is 14.5° East. True North is 360° - 14.5°, or 345.5° as read on a compass.

\(^*\) Other methods employ observations using the North Star or the sun, and are discussed in the Quality Assurance Handbook for Air Pollution Measurement Systems, Volume IV - Meteorological Measurements\(^4\).

![Figure 1.4-1. Magnetic Declination for the Contiguous United States](image-url)
1.4.1 NSSDC CGM SERVICE

The NSSDC CGM (Corrected Geomagnetic) Service provides an easy way of determining magnetic declination of a specific site. Since magnetic declination fluctuates with time, it should be determined each time the wind vane orientation is adjusted. It can be accessed on the world wide web at

http://nssdc.gsfc.nasa.gov/space/cgm/cgm.html

If you know the latitude and longitude of your site, fill out Form 1 as shown below for an accurate magnetic declination. If you do not know the latitude and longitude of your site, fill out Form 2 for estimate of magnetic declination. Note that longitude is expressed in 0 to 360 degrees east of the Greenwich prime meridian, and that north latitudes are positive.

Query Form 1: Latitude/Longitude

- Latitude/Longitude below specified in: Geographic
- Year (from 1945 to 2000): 1998
- Altitude above Earth’s surface (km) [from 0. to 40000.]: 0
- Latitude (degrees) [from -90.00 to 90.00]: 42.03
- Longitude (degrees) [from 0.00 to 360.00]: 248.15

Query Form 2: Image Map

- Year (from 1945 to 2000): 1998
- Altitude above Earth’s surface (km) [0. - 40000.]: 0
- Click on map to specify location and submit: (select area on map provided)

A table containing similar information to the following will be returned after submitting Forms 1 or 2.

<table>
<thead>
<tr>
<th>Geographic</th>
<th>Alt. (km)</th>
<th>CGM</th>
<th>IGRF Magnetic Field</th>
<th>Dipole</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lat.</td>
<td>Long.</td>
<td></td>
<td>H(nT)</td>
<td>Lat.</td>
</tr>
<tr>
<td>42.03</td>
<td>248.15</td>
<td>0.</td>
<td>49.80 311.06</td>
<td>20608.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14.417</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50505.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>49.68</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>312.14</td>
</tr>
</tbody>
</table>

Magnetic declination is bold in this example to show its location in the table. A positive declination is east, while a negative declination is west. The declination in this example is 14.417 degrees. As shown in Figure 1.4-1, the declination for Logan, UT is east, so True North for this site is 360 - 14.417, or 345.5 degrees.

FIGURE 1.4-2. Declination Angles East of True North Are Subtracted From 0 to Get True North

FIGURE 1.4-3. Declination Angles West of True North Are Added to 0 to Get True North

References

SECTION 2. CM6/CM10 TRIPOD INSTALLATION

The CM6 and CM10 tripods provide a support structure for mounting weather station components. Figure 2-1 shows a typical guyed CM10 tripod weather station equipped with instrumentation enclosure, meteorological sensors, and solar panel.

FIGURE 2-1. CM10 Weather Station
SECTION 2. TRIPOD INSTALLATION

2.1 SPECIFICATIONS

CM6 Tripod

Maximum height
(zero leg extension) 7.5 feet

Minimum height
(full leg extension) 5.5 feet

Wind Load (Wind Sensors at 2 meters)*
 Maximum wind load 100 mph
 Gust survival 130 mph

Tripod Leg Diameter (See Table 1-5)
 \[d = \text{diameter} \]
 \[h = \text{height at top of bell reducer} \]
 \[d = 2 \left(4.834 + (54.5^2 - (h - 42.4)^2)^{0.5} \right) \]

CM10 Tripod

Maximum height
(zero leg extension) 11 feet

Minimum height
(full leg extension) 7.2 feet

Wind Load (Wind Sensors at 3 meters)*
 No Guy Wires
 Maximum 70 mph
 Gust survival 100 mph
 With Guy Wires
 Maximum 120 mph
 Gust survival 150 mph

Tripod Leg Diameter (See Table 1-6)
 \[d = \text{diameter} \]
 \[h = \text{height at top of bell reducer} \]
 \[d = 2 \left(4.834 + (78.75^2 - (h - 62.35)^2)^{0.5} \right) \]

*Wind Load data assumes 4.5 ft² of area placed at the top of the tripod mast

TABLE 2-1. CM6 Heights and Leg Diameters

Height (In)	Diameter (In)
70 | 104 6/8
72 | 102 3/8
74 | 99 6/8
76 | 97
78 | 93 6/8

2.2 TRIPOD PARTS

Tripods are either shipped complete and mostly assembled (CM6 or CM10), or as a kit that requires the user to supply some parts (CM10K).

If a preassembled CM6 or CM10 Tripod was ordered, the following parts should have been received:

(1) Tripod Base Assemble
(1) Mast Assembly
(1) Cross Arm Mount (Short Pipe)
(1) Lightning Rod with Clamp
(1) Grounding Rod with Clamp
(1) 5 ft 4 AWG Wire
(1) 4 ft 12 AWG Wire
(3) Hold Down Stakes
(12) Cable Ties

If the CM10K Tripod Kit was received, first assemble the tripod base assembly and mast assembly according to Section 1 in the CM10K Tripod Kit Manual.

The following items are also part of the CM10K Tripod Kit:

(1) Cross Arm Mount (Short Pipe)
(1) Lightning Rod with Clamp
(1) Grounding Rod with Clamp

The following items need to be procured to complete the CM10K Tripod Kit:

(1) 5 ft 4 AWG Wire
(1) 4 ft 12 AWG Wire
(3) Hold Down Stakes
(12) Cable Ties
2.3 TRIPOD INSTALLATION

CM6 and CM10 tripods are designed to allow installation in many types of terrain. The following installation instructions, however, assume an installation on flat and reasonably level ground.

1. Prepare the area where the tripod will be installed. In most installations, the tripod requires an area 9 feet (CM6) or 12 feet (CM10) in diameter. Natural vegetation and the ground surface should be disturbed as little as possible, but brush and tall weeds should be removed.

2. Lay the tripod base and mast assemblies on the ground. Apply pipe dope or Teflon tape to threads on the crossarm mount (short pipe) and the 1 1/4 inch end of the mast. To prevent cross-threading, hand thread the crossarm mount into the mast's bell reducer and then tighten with a pipe wrench. Hand thread the mast into the threaded coupling on the tripod center bracket and then tighten with a pipe wrench.

3. Using a tape measure and a felt-tipped pen, mark the tripod legs to indicate how far they should extend. From the end of the 3/4" pipe that attaches to the foot (Figure 2-2), measure up 23" on the CM10, or 26" on the CM6, and mark each leg with a felt tip pen.

4. Each leg has a slide collar with a single bolt for loosening or tightening the collar (Figure 2-2). Loosen the bolt on each collar with a 1/2" wrench.

5. Stand the tripod upright and orient it so one leg points south (Figure 2-3). Extend the leg until the top of the slide collar is even with the mark from Step 3 and tighten the bolt. Extend the other legs in the same manner.

6. Plumb the mast by adjusting the south and northeast facing legs. Loosen the slide-collar bolt on the south facing leg. With the level on the south side of the mast, adjust the leg so the level reads plumb, then tighten the bolt. Repeat the same procedure for the northeast facing leg with the level on the east side of the mast.

NOTE: Adjusting the legs can be made easier by spraying the slide collar and leg with a silicon spray, and tapping on the leg with a hammer.

7. Three rebar stakes are provided for securing the tripod to the ground. Drive the stakes through the holes in the feet. Some users prefer to drive 4 foot "T" posts next to each leg, and attach the legs to the posts with 2" u-bolts.
2.4 TRIPOD GROUNDING

Ground the tripod and shown in Figures 2-1, 2-4, and 2-5.

1. Drive the ground rod close to the center of the tripod using a fence post driver or sledge hammer. Slide the clamp down the rod before driving it in the ground. This will eliminate the frustration of trying to get the clamp to fit over a hammer damaged rod end. Drive the rod at an angle if an impenetrable hardpan layer exists. In hard clay soils, a gallon jug of water can be used to “prime” the soil and hole to make driving the rod easier.

2. Loosen the bolt that attaches the clamp to the ground rod. Strip 1 inch of insulation from one end of the 4 AWG wire and insert it between the rod and the clamp. Tighten the clamp bolt (Figure 2-4).
3. Loosen the set screws in the two brass ground lugs attached to the center bracket of the tripod (Figure 2-5). Strip 1 inch of insulation from the other end of the 4 AWG wire and insert it into the lower ground lug. Tighten the set screw. Strip 1 inch of insulation from one end of the 12 AWG wire and insert it into the upper ground lug. Tighten the set screw. The other end of the 12 AWG wire will attach to the ground lug of the instrumentation enclosure.

4. Attach the lightning rod to the mast as shown in Figure 2-1. If the weather station includes an 019ALU crossarm, attach it to the mast first, as described in Section 2.2-1 of the weather station installation manual. Loosen the two screws on the lightning rod mounting bracket. Position the mounting bracket 4 inches down from the top of the mast, then tighten both screws evenly. Make sure the lightning rod set screw is tight.

FIGURE 2-5. Tripod Ground Connections

2.5 CM10 GUY KIT INSTALLATION

The CM10 Guy Kit is an option when purchasing the CM10 Tripod or CM10K Tripod Kit. It can be installed to improve the CM10 Tripod wind load rating. Table 2-3 lists items in the CM10 Guy Kit.

<table>
<thead>
<tr>
<th>Item</th>
<th>CSI Part #</th>
<th>Description</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>G1</td>
<td>10845</td>
<td>Wire Rope</td>
<td>3</td>
</tr>
<tr>
<td>G2</td>
<td>10846</td>
<td>Turnbuckle</td>
<td>3</td>
</tr>
<tr>
<td>G3</td>
<td>10848</td>
<td>Top Plate</td>
<td>1</td>
</tr>
<tr>
<td>G4</td>
<td>10849</td>
<td>Bottom Plate</td>
<td>3</td>
</tr>
<tr>
<td>G5</td>
<td>6131</td>
<td>Thimble</td>
<td>6</td>
</tr>
<tr>
<td>G6</td>
<td>6132</td>
<td>U-Bolt</td>
<td>12</td>
</tr>
</tbody>
</table>

Install the guy kit as shown in Figure 2-6.

FIGURE 2-6. Guy Wire Installation

1. Construct an assembly consisting of the top plate, wire ropes, 3 thimbles, and 6 u-bolts.
 a. Place a thimble into each of the three small holes of the top plate. Twist each thimble slightly, as shown in Figure 2-7, to accomplish this.
 b. Thread a piece of wire rope through each of the three small top plate holes. Double the wire rope back on itself about 8 inches. Clamp the doubled wire with two u-bolts per wire, forming a loop. Fit the wire loop into the thimble groove. Adjust the u-bolts as needed. Once the thimble and wire loop are fitted together, tighten the u-bolts to secure the clamps.
SECTION 2. TRIPOD INSTALLATION

2. Slide the top plate down the crossarm mount so that it rests on the bell reducer.

3. Attach the 3 bottom plates to the tripod feet with the existing tripod foot bolts. Make certain that each bottom plate is oriented such that the second hole is above the tripod foot.

4. Extend each turnbuckle to its functional limit.

5. Attach the loop-end of the turnbuckles to the free end of each wire rope as shown in Figure 2-8. Use the remaining thimbles and u-bolts as done in step 1. Only finger-tighten the u-bolts, however.

6. Place the hook-end of each turnbuckle into a bottom plate, in an orderly fashion, so that each wire rope spans to the top plate untangled and unobstructed.

7. Sequentially pull the free end of the wire ropes to tighten each turnbuckle loop. When each is as hand tight as possible, tighten the u-bolts to secure the clamps.

8. Tighten the turnbuckles sequentially, one turn per cycle. Only tighten the turnbuckles until the wire rope is taught. DO NOT OVER TIGHTEN! The turnbuckles and wire rope are strong enough to buckle the mast if over tightened.

9. Check plumbness of the mast and adjust the guy wire tightness as needed.

2.6 SENSOR MOUNTING BRACKETS

Mounting brackets provide a means of mounting the sensors to the tripod. Bracket mounting heights are referenced from the top of the bell reducer; orientation is shown in Figure 2-3.

2.6.1 019ALU CROSSARM SENSOR MOUNT

Attach the 019ALU to the mast as shown in Figure 2-9.

Slide the center NU-RAIL connector of the 019ALU down the crossarm mount (short pipe) until it rests on top of the bell reducer. In most applications, the center of the NU-RAIL connector should be about 113” above the ground surface. Orient the 019ALU in a East/West direction with the 3/4” NU-RAIL facing East (northern hemisphere) and tighten the set screws. If the 025 Crossarm Stand is used (Section 2.6.4), orient the 019ALU North-South with the 3/4” NU-RAIL facing South.
2.6.2 GILL RADIATION SHIELDS

Attach the Gill Radiation Shield (41002, 41004 and 41301) to the mast as shown in Figure 2-10.

Position the radiation shield on the side of the mast that faces the prevailing wind, with the top of the black plastic mounting base 36" down from the top of the bell reducer on the CM10, or against the bottom of the bell reducer on the CM6.

2.6.3 015 PYRANOMETER MOUNTING ARM

Attach the 015 Pyranometer Mounting Arm to the mast as shown in Figure 2-11.

Position the 015 on the south side of the mast (northern hemisphere), with the top of the mounting base 17" down from the top of the bell reducer on the CM10, or 3 1/2" down on the CM6.

2.6.4 025 PYRANOMETER CROSSARM STAND

Attach the 025 Pyranometer Crossarm Stand to the 019ALU as shown in Figure 2-12.

Position the mounting plate 5" above the 3/4" NU-RAIL and tighten the set screws.

FIGURE 2-10. Gill Radiation Shield

FIGURE 2-11. 015 Pyranometer Mounting Arm

FIGURE 2-12. 025 Pyranometer Crossarm Stand
SECTION 3. INSTRUMENTATION INSTALLATION

3.1 ENCLOSURE, DATALOGGER, POWER SUPPLY

3.1.1 ENCLOSURE

All instrumentation (datalogger, power supply, and communication peripherals) are mounted in the enclosure. A PVC bulkhead port is installed in the enclosure for routing the sensor and communication cables to the instrumentation.

Mount the enclosure to the mast as shown in Figure 3.1-1.

1. Position the enclosure on the north side of the mast or tower (northern hemisphere) as shown in Figure 3.1-1, 3.1-2, or 3.1-3. Attach the enclosure with the U-bolts provided.

2. Route the 14 AWG wire from the brass tripod grounding clamp (Section 2) to the enclosure grounding lug. Strip one inch of insulation from each end of the wire and insert the end of the wire into the grounding lugs and tighten the set screws.
3.1.2 CR10X DATALOGGER

The CR10X Datalogger and PS12 12 V Power Supply mount to the enclosure backplate as shown in Figure 3.1-7. Two screws (PN 447) attach the CR10X, four screws (PN 505) attach the PS12.

3.1.3 BPALK ALKALINE POWER SUPPLY

The BPALK battery pack houses eight alkaline "D" cell batteries. To install the batteries, loosen the thumb screw and remove the cover (Figure 3.1-7).

1. Make sure the red and black wires attached to the left end of the BPALK are connected to the "12 V" and "G" terminals on the CR10X.

2. Disconnect the battery pack from the external connector on the left end of the BPALK. Remove the battery pack and insert eight alkaline "D" cell batteries. Replace the battery pack.

3. Connect the battery pack to the external connector labeled "INTERNAL BATTERY" and replace the cover.

3.1.4 PS12LA RECHARGEABLE POWER SUPPLY

The PS12LA houses a sealed monoblock rechargeable battery. To install the battery, loosen the two thumb screws and remove the cover (Figure 3.1-8).

1. With the PS12 power switch "OFF", insert the battery and plug the battery lead into the connector labeled "INT".

2. Make sure the red and black wires attached to the "+12 V" and "-*" terminals on the PS12 are connected to the "12 V" and "G" terminals on the CR10X Wiring Panel.

3. An AC transformer or unregulated solar panel (Section 3.1-5) should be connected to the PS12LA at all times. Connect the lead wires from the transformer or solar panel without regard to polarity to the two terminals labeled "CHG" (Figure 3.1-8); the red LED should light when voltage is present.

NOTE: The wall transformer converts 120 VAC input to 18 VAC output. Maximum charging current is 1.1 A.

WARNING: Maximum input voltage into the "CHG" terminals is 26 VAC or 26 VDC. Do not connect 110 VAC directly to "CHG" terminals.

4. Turn power switch to "ON", and replace cover.

3.1.5 MSX10 SOLAR PANEL

Solar panels purchased from CSI are shipped with a charge plug taped to the back of the panel. The charge plug is not used with the PS12LA. Refer to the solar panel manual for installation instructions.

1. Mount the MSX10 solar panel to the mast, facing south (northern hemisphere) as shown in Figure 3.1-9. Position the MSX10 at the top of the 1 1/4 inch diameter section of the mast. Install the U-bolt, muffler clamp, and nuts as shown in Figure 3.1-9.

2. The solar panel should be oriented to receive maximum insolation over the course of the year. Suggested tilt angles (referenced to the horizontal plane) are listed below.

<table>
<thead>
<tr>
<th>Site Latitude</th>
<th>Tilt Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 10 degrees</td>
<td>10 degrees</td>
</tr>
<tr>
<td>11 - 20</td>
<td>Latitude + 5 degrees</td>
</tr>
<tr>
<td>21 - 45</td>
<td>Latitude + 10 degrees</td>
</tr>
<tr>
<td>46 - 65</td>
<td>Latitude + 15 degrees</td>
</tr>
<tr>
<td>> 65</td>
<td>80 degrees</td>
</tr>
</tbody>
</table>
3. After determining the tilt angle, loosen the two bolts that attach the mounting bracket to the panel. Adjust the angle, then tighten the bolts. Secure the lead wire to the mast using wire ties.

![Mounting Bracket](image)

![12 V and G Wires](image)

FIGURE 3.1-8. PS12LA 12 Volt Power Supply

FIGURE 3.1-9. MSX10 Solar Panel

3.2 SENSOR CONNECTION

1. After the sensors have been mounted, route the sensor leads through the entry hole in the bottom of the enclosure and to the datalogger. Secure the leads to the left side of the enclosure using cable ties and tabs (Figure 3.2-1). Any excess cable should be neatly coiled and secured to the tabs.

2. To connect a lead wire, loosen the appropriate screw terminal and insert the lead wire (wires should be stripped 5/16"), and tighten the screw using the screwdriver provided with the datalogger.

 If a datalogger program has been developed, the sensors will have to be wired to the channels specified by the measurement instructions.

 If a program has not been developed, Short Cut can be used to generate a program and wiring diagram. Run Short Cut, and wire the sensor leads as specified by the wiring diagram in the .DEF file.

 For more complex programming, or when sensors are used which are not supported by Short Cut, EDLOG (PC208 Software) must be used. If desired, wire the sensors and develop the program using EDLOG and the measurement instructions as shown in Section 5.
3.3 COMMUNICATION AND DATA STORAGE PERIPHERALS

One or more peripherals (i.e., storage modules, modems, etc.) can be mounted to the enclosure backplate (ENC 12/14 or ENC 16/18 enclosures).

3.3.1 SM192/S716 STORAGE MODULE

Storage modules extend the amount of memory that is available for storing data, and also provide on-site backup for data and programs.

Mount the SM192 to the enclosure backplate as shown in Figure 3.3-1.

1. Attach the mounting bracket (PN 6234) to the backplate using the four screws and nylon grommets provided.

2. Connect the storage module to the datalogger's I/O port with an SC12 cable. Place the storage module in the bracket and fasten the Velcro straps.

3.3.2 COMM200/COM300 PHONE MODEMS

A phone modem enables communication between the datalogger and the computer (with a Hayes compatible phone modem) over a dedicated telephone line. The COM300 additionally supports voice synthesis for voice calls.

Mount the modem to the enclosure backplate as shown in Figure 3.3-2.

1. Mount the modem to the backplate using the four screws and nylon grommets provided.

2. Connect the modem to the datalogger's I/O port with the SC12 cable provided.

3. The telephone company generally provides surge protection, and a patch cord that plugs into the RJ11C jack. If surge protection has not been provided, the Model 6362 Surge Protector Kit can be installed to the enclosure backplate. Connect the two terminals on the surge protector to the "tip" and "ring" terminals on the modem as shown in Figure 3.3-2.

4. Refer to COM300 manual for COM300 programming instructions.
SECTION 3. INSTRUMENTATION INSTALLATION

FIGURE 3.3-1. SM192/SM716 Storage Module

FIGURE 3.3-2. DC112 Modem with 6362 Surge Protector
SECTION 3. INSTRUMENTATION INSTALLATION

3.3.3 COM100 CELLULAR TRANSCEIVER

A cellular transceiver enables communication between the datalogger and a PC (with a Hayes compatible phone modem) over cellular service. The COM100 requires either the COM200 or COM300 modem.

Mount the COM100 in the enclosure as shown in Figure 3.3-3 with the following steps:

1. Mount the COM100 to the enclosure backplate using the four screws and nylon grommets provided.
2. Connect the modem to the datalogger's I/O port with an SC12 cable.
3. Mount the cellular Yagi antenna on a grounded mast, positioning it to point toward the nearest cellular tower, with the radiating elements oriented vertically. Route the coaxial cable into the enclosure through the wiring port and connect it to the cellular transceiver's coaxial connector. Provide strain relief for the cable on the left side of the enclosure with a cable tie and tab.
4. Connect 12V, ground, and control lines as described in the COM100 manual. Connect the modem and RJ-11C interface with the RJ-11 patch cord.

3.3.4 SRM-5A RAD MODEM AND SC932C INTERFACE

Rad Modems enable communication between the datalogger and computer over 4-wire unconditioned telephone line, or cable with two twisted pairs of wires.

The maximum distance between modems is determined by baud rate and wire gauge. At 9600 baud the approximate range is 5.0 miles using 19 gauge wire, 4.0 miles using 26 gauge wire.

Installation requirements depend on the type of cable that is used, and how it is installed (direct burial, conduit, etc.). In general, follow state and local electrical codes.

A recommended rodent-proof burial cable is PN F-02P22BPN, available from ANIXTER. Call ANIXTER at (708) 677-2600 for the name of a local distributor.

SRM-5A at the Datalogger

1. Plug the SRM-5A into the SC932(C). Position the notched tabs in the mounting bracket over the two screws in the SRM-5A (refer to Figure 3.3-4). Thread the SRM-5A screws through the bracket and into the SC932(C).

2. Attach the SRM-5A and SC932(C) mounting bracket to the enclosure backplate using the two screws and nylon inserts provided (Figure 3.3-4).

3. Connect the SC932(C) to the datalogger's I/O port with an SC12 cable.

4. Mount the 6361 Surge Protector to the enclosure backplate using the hardware provided. Connect the ground wire to the enclosure ground lug (Figure 3.3-5).

5. Cut a 12" long piece of two twisted pair cable and connect it to the SRM-5A as shown in Figure 3.3-5. Fasten the cable to the strain relief tab with a cable tie.

6. Route the cable previously attached to the SRM-5A, and the two twisted pair cable (from the other SRM-5A) to the 6361. Connect the cables as shown in Figure 3.3-5. Strain relief the cables to the side of the enclosure using cable ties and tabs.
3.3.4.2 SRM-5A at the Computer

1. Mount the 6361 (or 5563) Surge Protector to a flat surface (close to the computer) using two screws. Ground the center terminal to an earth (or building) ground using a 12 AWG or larger diameter wire.

2. Cut a piece of two twisted pair cable long enough to reach from the 6361 to the computer. Connect the cable to the SRM-5A as shown in Figure 3.3-5. Fasten the cable to the strain relief tab with a cable tie. Connect the SRM-5A to the computer's serial port.

3. Route the cable from the remote SRM-5A, and the cable from the SRM-5A attached to the computer to the 6361. Connect the cables as shown in Figure 3.3-5. Strain relief the cables using cable ties and tabs.

3.3.5 RF95 RF MODEM AND RF100/RF200 TRANSCEIVER

Radiotelemetry (RF) enables communications between one or more dataloggers and the computer over an FCC-assigned radio frequency in the VHF or UHF band. The maximum distance between any two communicating stations is approximately 20 miles and must be line-of-sight. Longer distances and rough terrain may require intermediate repeater station(s). Refer to the Radiotelemetry Network Applications manual for RF repeater stations and RF Networks accessed remotely by phone.
SECTION 3. INSTRUMENTATION INSTALLATION

FIGURE 3.3-5. SRM-5A Wiring
3.3.5.1 RF95 Modem and RF100/RF200 Transceiver at the Datalogger

Mount the RF95 RF Modem and the radio transceiver to the enclosure backplate as shown in Figure 3.3-6.

1. Remove the four screws that attach the lid to the RF95 modem. Remove the lid, then remove the single screw that secures the circuit board to the base. Remove the circuit board, and mount the base to the enclosure backplate using the two screws and plastic grommets provided.

2. Set the dip switches on the circuit board to the appropriate Station ID (Table 3.3-1). Each RF95 must have a unique station ID; address 1 is usually used for the base station, address 2 for first remote station, address 3 for the next remote station, etc. Switch 9 should be in the "OPEN" position. Reassemble the circuit board and lid. Do not tighten the four lid screws at this time.

3. Attach the radio mounting bracket to the RF95 lid and tighten the four lid screws.

4. Connect the radio to the RF95 with the cable provided. The ends of the cable are labeled “RF95" and “RADIO”. Route the red and black wires to the PS12. Connect the RF95 to the datalogger using an SC12 cable.

5. Mount the antenna to the mast according to the manufacturer's instructions. Connect the antenna cable to the antenna and route the cable to the radio. Connect the antenna cable to the radio as shown in Figure 3.3-6.

6. Connect the red wire to a 12V terminal. Connect the black wire to a terminal.

FIGURE 3.3-6. RF95 RF Modem and RF100/RF200 Transceiver
TABLE 3.3.1. Station ID Numbers and Corresponding Switch Settings**

<table>
<thead>
<tr>
<th>Station ID</th>
<th>Switch Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234</td>
<td>56789</td>
</tr>
<tr>
<td>56789</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0000</td>
</tr>
<tr>
<td>1</td>
<td>0010</td>
</tr>
<tr>
<td>2</td>
<td>1000</td>
</tr>
<tr>
<td>3</td>
<td>1100</td>
</tr>
<tr>
<td>4</td>
<td>0010</td>
</tr>
<tr>
<td>5</td>
<td>1010</td>
</tr>
<tr>
<td>6</td>
<td>0110</td>
</tr>
<tr>
<td>7</td>
<td>1110</td>
</tr>
<tr>
<td>8</td>
<td>0001</td>
</tr>
<tr>
<td>9</td>
<td>1001</td>
</tr>
<tr>
<td>10</td>
<td>0101</td>
</tr>
<tr>
<td>11</td>
<td>1101</td>
</tr>
<tr>
<td>12</td>
<td>0011</td>
</tr>
<tr>
<td>*255</td>
<td>1111</td>
</tr>
</tbody>
</table>

* Station ID 255 is reserved for phone-to-RF base stations.
** See Appendix A in the Radiotelemetry Network Applications Manual for a table of switch settings.

3.3.5.2 RF232 RF Base Station

1. Install the base station antenna according to the manufacturer's instructions. Connect the antenna cable to the antenna and route the cable to the RF232.

2. With the power cord disconnected, remove the four screws that attach the RF232 lid. Remove the lid, and install the radio transceiver as shown in Figure 3.3-8. Connect the red wire to the "12 V" terminal, and the black wire to the "−" terminal inside the RF232. Connect the multi-colored ribbon cable to the RF modem; make sure that the keyway is properly aligned.

3. Connect the antenna cable to the antenna connector on the radio. Reassemble the RF232 lid using the screws previously removed.

4. With the power switch "OFF", connect the power cord to 110V AC. Connect the serial port to the computer's serial port using an SC25PS cable for a 25-pin serial port, or a PN7026 cable for a 9-pin serial port. Toggle the power switch to "ON" to operate the RF232.

3.3.6 MD9 MULTIDROP INTERFACE

The MD9 Multidrop Interface enables communication with one or more dataloggers and the computer over a single 75 ohm coaxial cable. An MD9 network can be connected directly to the computer, or can be connected to a telephone modem (refer to the MD9 Manual) and accessed remotely.

Total coax length may be up to three miles. Since each MD9 attenuates the signal 0.2 db, the maximum length depends on the number of MD9s in the network (refer to the MD9 manual).

Coaxial cable and BNC connectors may be ordered from CSI, or purchased locally (Belden Type 9100 RG59/U or equivalent). Call Belden Wire and Cable at (317) 983-5200 for the name of a local distributor.

Installation requirements depend on the type of cable that is used, and how it is installed (direct burial, conduit, etc.). In general, follow state and local electrical codes.

3.3.6.1 MD9 Multidrop Interface at the Datalogger

Mount the MD9 to the enclosure backplate as shown in Figure 3.3-8.
1. Remove the four screws that attach the lid to the MD9. Remove the lid, and the single screw that attaches the circuit board to the base. Remove the board and mount the base to the enclosure backplate using the two screws and nylon grommets provided.

2. Set the dip switches on the circuit board to the appropriate Station ID (Table 3.3-2). Each MD9 must have a unique ID; address 1 is usually used for the MD9 at the computer, address 2 for the next MD9, address 3 for the next MD9, etc. The default baud rate is 9600, which can be changed with the jumpers next to the dip switches (Table 3.3-2).

3. Reassemble the circuit board and lid using the screws previously removed.

4. Route the coaxial cable(s) to the MD9. Connect the cable(s) to the MD9 using the BNC “T” provided. The first and last MD9s of the network must be terminated with 75 ohm Coax Terminators (Model MD9CT) to prevent signal reflection.

5. Connect the green ground wire to the "\(^{\bot}\)" terminal on the MD9, and to datalogger ground. Connect the MD9 to the datalogger with an SC12 cable.

3.3.6.2 MD9 Multidrop Interface at the Computer

Connect the MD9 and the SC532 9 Pin Peripheral to RS232 Interface to the computer as shown in Figure 3.3-9.

1. Connect the SC532 to the computer’s serial port using an SC25PS cable for a 25-pin serial port, or a PN7026 cable for a 9-pin serial port. Connect the MD9 to the SC532 with an SC12 cable.

2. Route the coaxial cable to the MD9; connect the cable and an MD9CT to the MD9 using the BNC “T” provided.
TABLE 3.3-2 Station ID Numbers and Corresponding Switch Settings

<table>
<thead>
<tr>
<th>Station ID</th>
<th>Switch Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1234</td>
<td>0000 0000</td>
</tr>
<tr>
<td>5678</td>
<td>1234 5678</td>
</tr>
<tr>
<td>0</td>
<td>0000 0000</td>
</tr>
<tr>
<td>1</td>
<td>1000 0000</td>
</tr>
<tr>
<td>2</td>
<td>0100 0000</td>
</tr>
<tr>
<td>3</td>
<td>1100 0000</td>
</tr>
<tr>
<td>4</td>
<td>0010 0000</td>
</tr>
<tr>
<td>5</td>
<td>1010 0000</td>
</tr>
<tr>
<td>6</td>
<td>0110 0000</td>
</tr>
<tr>
<td>7</td>
<td>1110 0000</td>
</tr>
<tr>
<td>8</td>
<td>0001 0000</td>
</tr>
<tr>
<td>9</td>
<td>1001 0000</td>
</tr>
<tr>
<td>10</td>
<td>0101 0000</td>
</tr>
<tr>
<td>11</td>
<td>1101 0000</td>
</tr>
<tr>
<td>12</td>
<td>0011 0000</td>
</tr>
<tr>
<td>*255</td>
<td>1111 1111</td>
</tr>
</tbody>
</table>

NOTE: Addresses 1-254 are valid for an MD9 connected to a datalogger or computer. Address 255 is used only when the MD9 is connected to a telephone modem or computer.
FIGURE 3.3-9. MD9 Multidrop Interface at the Computer
3.4 SEALING AND DESICCATING THE ENCLOSURE

CSI enclosures include an Enclosure Supply Kit with the following items:

- (4) Desiccant packs
- (1) Humidity indicator card
- (6) 4-inch cable ties
- (6) 8-inch cable ties
- (4) Cable tabs
- (1) 4 oz. sealing putty

Items in the Enclosure Supply Kit are used to strain relief the sensor leads, and to seal and desiccate the enclosure, as shown in Figure 3.4-1.

1. Secure the sensor leads to the left side of the enclosure and to the datalogger using cable ties and tabs.

2. Seal around the sensor leads where they enter the enclosure. Place a roll of putty around the sensor leads and press it around the leads and into the coupling to form a tight seal.

3. Remove the RH indicator card and two desiccant packs from the sealed plastic bag. Remove the backing from the indicator card and attach the card to the right side of the enclosure.

The humidity indicator card has three colored circles which indicate the percentage of humidity. Desiccant packs inside the enclosure should be replaced with fresh packs when the upper dot on the indicator begins to turn pink. The indicator card does not need to be replaced unless the colored circles overrun.
SECTION 4. SENSOR INSTALLATION

Sensor leads should be routed down the North side of the mast to the enclosure and secured with cable ties.

4.1 034A MET ONE WINDSET
Mount the 034A to the 019ALU crossarm as shown in Figure 4.1-1.

1. Place the 034A stem and bushing into the 3/4" x 1" NU-RAIL fitting.

2. With the shoulder screw in place, orient the counter weight to point due south. See Section 4.19 for final calibration.

3. Tighten the NU-RAIL set screws and remove the shoulder screw.

4.2 014A MET ONE WIND SPEED SENSOR
Mount the 014A sensor to the 019ALU crossarm as shown in Figure 4.2-1.

1. Insert the base of the sensor through the 3/4" NU-RAIL. Position the sensor 1" below the NU-RAIL and tighten the set screws.

2. Connect the sensor lead to the sensor. A small amount of lithium grease applied to the threads of the connector will prevent problems due to corrosion.

FIGURE 4.1-1. Met One 034A Wind Speed and Direction Sensor

FIGURE 4.2-1. Met One 014A Wind Speed Sensor
4.3 024A MET ONE WIND DIRECTION SENSOR

Mount the 024A sensor to the 019ALU crossarm as shown in Figure 4.3-1.

1. Remove the hex-head screw located 3" from the base of the sensor. Insert the base of the sensor through the aluminum bushing provided with the sensor. Align the hole in the bushing with the hole in the sensor and replace the screw.

2. Insert the base of the sensor through the 1" NU-RAIL until the bushing screw rests on the NU-RAIL. Orient the sensor so the counter weight points south and tighten the set screws (see Section 4.19 for final calibration). Remove the shoulder screw to allow the vane to rotate.

3. Connect the sensor lead to the sensor. A small amount of lithium grease applied to the threads of the connector will prevent problems due to corrosion.

4.4 05103 AND 05305 RM YOUNG WIND MONITORS

Mount the 05103 (or 05305) to the 019ALU crossarm as shown in Figure 4.4-1.

1. Position the top of the mounting post 5" above the 1" NU-RAIL and tighten the set screws.

2. Slide the orientation ring and the 05103 onto the mounting post. Rotate the sensor base so that the square wiring box points south. Engage the key in the orientation ring with the keyway on the sensor and tighten the band clamps (see Section 4.19 for final calibration).

3. Remove the plastic nut on the propeller shaft. Slide the propeller onto the shaft (face the side with the lettering out) and replace the nut.

FIGURE 4.3-1. Met One 024A Wind Direction Sensor

FIGURE 4.4-1. 05103 RM Young Wind Monitor
4.5 03001 RM YOUNG WIND SENTRY WIND SET

The 03001 can be mounted directly to the mast, or to the 019ALU Crossarm.

4.5.1 03001 MOUNTED TO THE MAST

Mount the 03001 to the mast as shown in Figure 4.5-1.

1. Slide the crossarm mounting bracket onto the mast. Orient the crossarm so the vane end points north, and tighten the band clamp (see Section 4.19 for final calibration).

2. Attach the cup assembly to the anemometer shaft using the allen wrench provided.

4.5.2 03001 MOUNTED TO 019ALU CROSSARM

Mount the 03001 to the 019ALU crossarm as shown in Figure 4.5-2.

1. Position the top of the mounting post 5" above the 3/4" NU-RAIL and tighten the set screws.

2. Slide the crossarm mounting bracket onto the mounting post. Orient the crossarm so the vane end points north, and tighten the band clamp (see Section 4.19 for final calibration).

3. Attach the cup assembly to the anemometer shaft using the allen wrench provided.

4.6 03101 RM YOUNG WIND SENTRY ANEMOMETER

Mount the 03101 to the 019ALU crossarm as shown in Figure 4.6-1.

1. Screw the mounting post into the mounting bracket on the sensor.

2. Position the top of the mounting post 5" above the 3/4" NU-RAIL and tighten the set screws.

3. Attach the cup assembly to the anemometer shaft using the allen wrench provided.
4.7 LICOR SILICON RADIATION SENSORS (LI200X, LI200S, LI190SB)

Mount the Radiation Sensor to the LI2003S Base and Leveling Fixture as shown in Figure 4.7-1.

1. Position the base of the sensor in the mounting flange on the LI2003S, and tighten the set screw with the allen wrench provided. Adjust the three leveling screws flush with the bottom of the LI2003S.

2. Mount the LI2003S to the 025 or 015 (Section 2.2) using the three mounting screws provided. Do not tighten the screws at this time.

3. Level the LI2003S using the bubble level and leveling screws and tighten the mounting screws. **Remove the red protective cap prior to use.**

4.8 107/108 TEMPERATURE PROBE

Mount the 107 temperature probe inside the 41301 (UT6P) 6-Plate Gill Radiation Shield as shown in Figure 4.8-1.

1. Loosen the two mounting clamp screws on the base of the 41301 (UT6P). Insert the 107 probe through the mounting clamp until the white heat shrink is even with the bottom of the clamp.

2. Tighten the two screws evenly until the clamp is snug against the sensor lead.

FIGURE 4.7-1. LI200X/LI200S/LI190SB and LI2003S Leveling Fixture

FIGURE 4.8-1. 107 Temperature Probe
4.9 107/108 SOIL TEMPERATURE PROBE

1. Select an undisturbed area of ground on the side of the tower that will receive the least amount of traffic. Route the sensor lead from the datalogger to the selected area.

2. Dig a narrow trench next to the sensor lead, ending the trench at least 6" short of the probe tip. Lay the sensor lead into the trench.

3. Use a screwdriver to poke a horizontal hole into the undisturbed soil at the end of the trench at the appropriate measurement depth. Insert the probe tip into the hole and carefully backfill the trench.

4. If bare soil is required, a soil sterilant such as Paramitol® can be applied to the area where the probe is buried. Soil erosion can be a problem when the probe is under bare soil. To prevent erosion from occurring, bury a 36” square frame constructed from 2” x 4” lumber around the probe, with the top of the frame even with the soil surface.

4.10 CS500 VAISALA TEMPERATURE AND RH PROBE

Mount the CS500 probe inside the 41301 (UT6P) 6-Plate Gill Radiation shield as shown in Figure 4.10-1.

1. Loosen the two mounting clamp screws on the base of the radiation shield. Insert the CS500 sensor through the clamp until the base of the sensor is even with the bottom of the clamp.

 Tighten the two screws evenly until the clamp is snug against the sensor base.

FIGURE 4.10-1. CS500 Temperature and RH Probe

SECTION 4. SENSOR INSTALLATION

4.11 HMP45C/HMP35C VAISALA TEMPERATURE AND RH PROBE

Mount the probe inside the 41002 or UT12VA 12-Plate Gill Radiation shield as shown in Figure 4.11-1.

1. Loosen the split plastic nut on the base of the shield. Insert the probe and tighten the nut.

4.12 CS105 VAISALA BAROMETRIC PRESSURE SENSOR

Mount the CS105 sensor to the enclosure backplate as shown in Figure 4.12-1 or Figure 4.12-2.

1. Mount the CS105 to the mounting plate using the two screws and grommets provided.

FIGURE 4.11-1. HMP35C Vaisala Temperature and RH Probe

FIGURE 4.12-1. CS105 Vaisala Barometric Pressure Sensor in a Standard Weather Station Enclosure

FIGURE 4.12-2. CS105MD Vaisala Barometric Pressure Sensor in a MetData1 Enclosure
4.13 TEXAS ELECTRONICS TIPPING BUCKET RAIN GAGES (TE525, TE525WS, TE525MM)

1. Mount the rain gage to a vertical pipe as shown in Figure 4.13-1. Mounting the gage directly to the tripod or tower is not recommended.

2. Dig a 6" diameter hole 24" deep.

3. Center a 1 1/4" to 2" IPS pipe in the hole and fill the hole with concrete. Use a level to plumb the pipe as the hole is filled.

4. After the concrete has cured, attach the rain gage to the top of the pipe with the hose clamps provided. Route the sensor lead to the tripod in plastic or metal conduit.

![FIGURE 4.13-1. TE525 Texas Electronics Rain Gage]

4.14 CS700-L RAIN GAGE

The CS700-L should be mounted in a relatively level spot that is representative of the surrounding area. The lip of the funnel should be horizontal and at least 30 inches above the ground. The ground surface around the rain gage should be natural vegetation or gravel. The gage should not be installed over concrete or pavement.

1. Mount the CS700 to either the CM100 (Figure 4.14-1) or a user supplied bracket. Remove the CS700-L funnel from the base by removing the three screws and lifting upward. Adjust the three nuts on the CM100 bracket to level the rain gage. On user supplied brackets, shims or washers can be used to level the rain gage. A bubble level is mounted on the CS700-L base to facilitate leveling.

2. Remove the rubber shipping band and cardboard packing securing the tipping bucket assembly. Tip the bucket several times to insure the tipping mechanism is moving freely.

3. Replace the housing assembly and tighten the three screws to secure the housing to the base.

![FIGURE 4.14-1. CS700-L Rain Gage and CM100 Mounting Bracket]
4.15 SR50 SONIC RANGING SENSOR

The SR50s mounting stem enables various installation options. A 3/4" x 1" NU-RAIL (CSI part number 1049) enables the SR50 to mount to a horizontal 3/4" pipe. The mounting stem also has 1" pipe thread to accommodate other threaded installation options. The UT018 crossarm and part number 6880 bracket can be used to mount the SR50 to 3/4" - 1.25" diameter vertical pipe.

The SR50 should be mounted perpendicular to the target surface, without obstructions. See Figure 4.15-1.

FIGURE 4.15-1. SR50 Sonic Ranging Sensor

4.16 CS615 WATER CONTENT REFLECTOMETER

Probe rods can be inserted vertically or horizontally into the soil surface, as shown in Figure 4.16-1, or buried at any orientation to the surface. A probe inserted vertically into a soil surface will give an indication of the water content in the upper 30 cm of soil. Horizontal installation will detect the passing of wetting fronts. Insertion at a 30 degree angle with the surface will measure water content in the upper 15 cm of soil.

Probes must be inserted such that no air voids are created around the rods, and that the rods remain as parallel as possible. Use the CS615G probe insertion guide to minimize errors due to improper insertion.

The standard calibration for the CS615 probe, as programmed in Short Cut, is valid for loamy soils with low organic content. In other types of soils, reporting the output in units of period will make it possible to apply your own calibration during post processing of data.

FIGURE 4.16-1. CS615 Water Content Reflectometer with CS615G Probe Insertion Guide
SECTION 4. SENSOR INSTALLATION

4.17 237 LEAF WETNESS SENSOR

Mounting and orientation considerations are left to the user to determine. Consult the 237 manual for preparation and other information. Normally, the sensor is mounted away from the meteorological tower in or near a plant canopy.

FIGURE 4.17-1. 237 Leaf Wetness Sensor

4.18 257 SOIL MOISTURE SENSOR

1. Soak the sensor end of the 257 in irrigation water for 12 to 14 hours. Allow the sensor to dry for 1 to 2 days after soaking and repeat the soak/dry cycle twice to improve sensor response. Always install a wet sensor.

2. Install the sensor into soil representative of the field conditions you wish to monitor. Avoid high or low spots. Placement south of the weather station mast (northern hemisphere) will avoid the effects of the mast shade. Installation in the root zone is best if measurements are used for irrigation purposes.

3. The 257 should be removed from the soil prior to harvest or cultivation operations to avoid damaging the sensor or sensor cable. Remove when soil is moist.

FIGURE 4.18-1. 257 Soil Moisture Sensor
4.19 ENCLOSURE HUMIDITY SENSOR

Install the PN 10162, HM2000 Humidity Sensor in the enclosure to monitor enclosure humidity. The MetData1 and ET101/106 are shipped with this sensor pre-installed.

![Enclosure Humidity Sensor](image)

FIGURE 4.19-1. Enclosure Humidity Sensor

4.20 WIND DIRECTION SENSOR ORIENTATION

4.20.1 DETERMINING TRUE NORTH AND SENSOR ORIENTATION

Orientation of the wind direction sensor is done after the datalogger has been programmed, and the location of True North has been determined. True North is usually found by reading a magnetic compass and applying the correction for magnetic declination*: where magnetic declination is the number of degrees between True North and Magnetic North. Magnetic declination for a specific site can be obtained from a USFA map, local airport, or through a computer service offered by the USFS called GEOMAG (Section 4.20.2). A general map showing magnetic declination for the contiguous United States is shown in Figure 4.20-1.

Declination angles east of True North are considered negative, and are subtracted from 0 degrees to get True North as shown Figure 4.20-2. Declination angles west of True North are considered positive, and are added to 0 degrees to get True North as shown in Figure 4.20-3. For example, the declination for Logan, Utah is 16° East. True North is 360° - 16°, or 344° as read on a compass.

Orientation is most easily done with two people, one to aim and adjust the sensor, while the other observes the wind direction displayed by the datalogger.

1. Establish a reference point on the horizon for True North.
2. Sighting down the instrument center line, aim the nose cone, or counterweight at True North. Display the input location for wind direction using the *6 Mode of the datalogger, or, the Monitor Mode of GraphTerm with an on-line PC.
3. Loosen the band clamps or set screws that secure the base of the sensor to the mast or crossarm. While holding the vane position, slowly rotate the sensor base until the datalogger indicates 0 degrees. Tighten the band clamps or set screws loosened previously.
4. Engage the orientation ring indexing pin in the notch at the instrument base (05103 and 05305 sensors only), and tighten the band clamp on the orientation ring.

* Other methods employ observations using the North Star or the sun, and are discussed in the Quality Assurance Handbook for Air Pollution Measurement Systems, Volume IV - Meteorological Measurements.
SECTION 4. SENSOR INSTALLATION

4.20.2 PROMPTS FROM GEOMAG

GEOMAG is accessed by calling 1-800-358-2663 with a computer and telephone modem, and communications program such as GraphTerm (PC208 Software). GEOMAG prompts the caller for site latitude, longitude, and elevation, which it uses to determine the magnetic declination and annual change. The following Menu and prompts are from GEOMAG:

MAIN MENU

Type
Q for Quick Epicenter Determinations (QED)
L for Earthquake Lists (EQLIST)
M for Geomagnetic Field Values (GEOMAG)
X to log out

Enter program option: M

Would you like information on how to run GEOMAG (Y/N)? N

Options:
1 = Field Values (D, I, H, X, Z, F)
2 = Magnetic Pole Positions
3 = Dipole Axis and Magnitude
4 = Magnetic Center [1] : 1

Display values twice [N]: press return
Name of field model [USCON90]: press return
Date [current date]: press return

Example of report generated by GEOMAG:

Model: USCON90
Latitude: 42/2 N
Longitude: 111/51/2 W
Elevation: 4454.0 ft

D
deg min
15 59.6

Annual change:
0 -6.1

The declination in the example above is listed as 15 degrees and 59.6 minutes. Expressed in degrees, this would be 15.99 degrees. As shown in Figure 4.20-1, the declination for Utah is east, so True North for this site is 360 - 15.99, or 344 degrees. The annual change is -6.1 minutes.

FIGURE 4.20-1. Magnetic Declination for the Contiguous United States
SECTION 4. SENSOR INSTALLATION

FIGURE 4.20-2. Declination Angles East of
True North Are Subtracted From 0 to Get
True North

FIGURE 4.20-3. Declination Angles West of
True North Are Added to 0 to Get
True North
SECTION 5. STANDARD SOFTWARE INSTALLATION

Software required for a weather station consists of the datalogger program and a datalogger support software suite for Windows or MS-DOS.

5.1 DATALOGGER PROGRAM
The datalogger program operates the weather station. It programs the datalogger to measure sensors, process the measurements, and store data in the datalogger’s memory. The datalogger program is most easily created using Short Cut for MS-DOS. Short Cut is compatible with Windows DOS emulator. A separate manual covers the use of Short Cut in detail.

5.2 DATALOGGER SUPPORT SUITE
A datalogger support software suite, either PC208W or PC208, enables interfacing with the MetData1 through Windows or MS-DOS. Follow the installation procedure outlined in the front of the software manual. PC208(W) is used to download programs to the weather station datalogger. It is also used to monitor data in real time and retrieve data stored in the datalogger.

5.3 QUICK START REVIEW
Follow these steps to program the weather station datalogger and install the datalogger support software suite.

1) Install PC208W or PC208, and Short Cut, into your Windows or DOS computer as outlined in their respective manuals.

2) Start Short Cut by entering “SC” at a DOS prompt. Create the weather station program by following the four steps outlined.

3) Print the DEF file produced by Short Cut. Follow the wiring assignments in the DEF file when connecting sensors to the weather station datalogger.

4) Start PC208 by typing “PC208E” at the DOS prompt OR start PC208W from Windows.

5) Create a station file with PC208 (File | New | Station) OR create a station on the PC208W device map (Setup | Add Device).

6) Establish communications with the datalogger. With PC208W Connect | Connect will activate the communication and confirm communications by reporting the datalogger clock time. With PC208 File | Open | Station then RealTime | Call then Tools | Clock Set / Check will activate the station file and confirm communications by checking the datalogger clock.

7) Download the program created in Step 2. With PC208W Connect | Send will download the weather station program. With PC208 Tools | Send Datalogger Prog will download the weather station program.

8) After the appropriate length of time, retrieve data from the datalogger to an ASCII file. With PC208W Connect | Collect will retrieve data. With PC208 DataCollection | Call Now (CurrentStn) will retrieve data.

9) Weather reports can be generated. PAR files created by Short Cut can be used to create simple reports. With PC208W Report | File | Open will select a PAR file. With PC208, File | Reports | Edit Param File will select a PAR file.
SECTION 6. MAINTENANCE AND TROUBLESHOOTING

These guidelines apply to several different Campbell Scientific weather stations.

6.1 MAINTENANCE

Proper maintenance of weather station components is essential to obtain accurate data. Equipment must be in good operating condition, which requires a program of regular inspection and maintenance. Routine and simple maintenance can be accomplished by the person in charge of the weather station. More difficult maintenance such as sensor calibration, sensor performance testing (i.e., bearing torque), and sensor component replacement, generally requires a skilled technician, or that the instrument be sent to Campbell Scientific or the manufacturer.

A station log should be maintained for each weather station that includes serial numbers, dates that the site was visited, and maintenance that was performed.

6.1.1 INSTRUMENTATION MAINTENANCE

The instrumentation requires a minimum of routine maintenance. A few preventative maintenance steps will optimize battery life and decrease the chances of datalogger failure.

6.1.2 BATTERIES

Instruction 10 can be used to measure battery voltage. By recording battery voltage the user can determine how long a fresh set of batteries will last (see the Installation Section of the datalogger Operator's Manual for cold temperature effects on alkaline batteries). Short Cut and ETPro automatically program the weather station to measure battery voltage.

When alkaline batteries are used, the battery voltage should not be allowed to drop below 9.6 VDC before replacement. Where CR10 or 21X dataloggers are used in the instrumentation, an external battery must be used to maintain power to the datalogger when changing batteries, otherwise the clock, program, and data will be lost (refer to the Installation Section of the datalogger's Operator's Manual for details). When not in use, remove the eight cells to eliminate potential corrosion of the contact points, and store in a cool dry place.

Rechargeable power supplies should be connected to an AC transformer or unregulated solar panel at all times. The charge indicating diode should be "ON" when voltage to the charging circuitry is present. Be aware of battery voltage that consistently decreases over time, which indicates a failure in the charging circuitry.

6.1.3 DESICCANT

Enclosure humidity is monitored in the ET Enclosure and MetData1 systems by an RH chip incorporated into the connector board. Change the desiccant packs when the enclosure RH exceeds 35%. The RH chip should be changed every 3 to 5 years.

In standard weather stations, a humidity indicator card is provided with the enclosure. A small RH sensor (10162) can be purchased separately to record the RH inside the enclosure. Change the desiccant when either the card or the sensor read about 35% RH.

Desiccant may be ordered through Campbell Scientific (DSC 20/4).

Desiccant packs inside of the dataloggers do not require replacement under normal conditions.

6.1.4 SENSOR MAINTENANCE

Sensor maintenance should be performed at regular intervals, depending on the desired accuracy and the conditions of use. A suggested maintenance schedule is outlined below.

1 week

- Check the pyranometer for level and contamination. Gently clean, if needed.
- Visually inspect the wind sensors and radiation shield.

1 month

- Check the rain gage funnel for debris and level.
- Do a visual/audio inspection of the anemometer at low wind speeds.
- Check the filter of the temperature/humidity sensor for contamination.
SECTION 6. MAINTENANCE AND TROUBLESHOOTING

General Maintenance

- An occasional cleaning of the glass on the solar panel will improve its efficiency.
- Check sensor leads and cables for cracking, deterioration, proper routing, and strain relief.
- Check the tripod or tower for structural damage, proper alignment, and for level/plumb.

6 months

- Clean the temperature/humidity sensor.
- Clean the Gill Radiation Shield.

1 year

- Replace anemometer bearings.
- Calibrate the rain gage.
- Calibrate the HMP45C/HMP35C probe.
- Check calibration of CS500 RH Probe; replace RH chip if necessary.
- Check internal RH chip (MetData1 and ET101/106 only). Replace if >5% off.

2 years

- Calibrate the solar radiation sensors (some users suggest yearly).
- Calibrate the temperature sensor.
- Replace the wind vane potentiometer and bearings.

4 - 5 years

- Replace sensor cables as required.

6.2 TROUBLESHOOTING

6.2.1 NO RESPONSE USING THE KEYPAD

Check keypad response after each of the following steps.

A. Make sure the battery has been installed, and the power switch, if any, is "ON" (Section 7).

B. Use a voltmeter to measure the voltage on the 12 V and G terminals; the voltage must be between 9.6 and 16 VDC.

C. Disconnect any sensor or peripheral wires connected to the 5 V and 12 V terminals.

D. Disconnect any communications or storage peripherals from the datalogger.

E. Reset the datalogger by turning the power switch to "OFF", then to "ON" or disconnecting and reconnecting the battery.

F. If still no response, call Campbell Scientific.

6.2.2 NO RESPONSE FROM DATALOGGER THROUGH SC32A OR MODEM PERIPHERAL

At the datalogger:

A. Make sure the battery has been installed, and the power switch, if any, is "ON" (Section 7).

B. Use a voltmeter to measure the voltage on the 12 V and G terminals; the voltage must be between 9.6 and 16 V DC.

C. Make sure the datalogger is connected to the modem, and the modem is properly configured and cabled (Section 9).

At the computer:

D. Make sure the Station File is configured correctly (PC208 Manual).

E. Check the cable(s) between the serial port and the modem. If cables have not been purchased through Campbell Scientific, check for the following configuration using an ohm meter:

 25-pin serial port:

<table>
<thead>
<tr>
<th>computer end</th>
<th>modem end</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>

 9-pin serial port:

<table>
<thead>
<tr>
<th>computer end</th>
<th>modem end</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

F. Make sure the modem is properly configured and cabled (Section 9).

G. If still no response, call Campbell Scientific.
6.2.3 -99999 DISPLAYED IN AN INPUT LOCATION

A. Make sure the battery voltage is between 9.6 and 16 VDC.

B. With the MetData1 or ET106, verify that the sensor is connected to the proper bulkhead connector. With custom weather stations, verify the sensor is wired to the analog channel specified in the measurement instruction or Short Cut .FSL file (single-ended channels are not labeled on the older silver-colored wiring panels and are numbered sequentially starting at 1H; i.e. 1L is single-ended channel 2).

C. Make sure the Range parameter in the measurement instruction covers the full scale voltage output by the sensor.

6.2.4 UNREASONABLE RESULTS DISPLAYED IN AN INPUT LOCATION

A. Inspect the sensor for damage and/or contamination.

B. Make sure the sensor is properly wired to the datalogger.

C. Check the multiplier and offset parameters in the measurement instruction.

6.2.5 6999 OR 99999 STORED IN FINAL STORAGE (OR STORAGE MODULE)

A. Final Storage format limitations exceeded (any number larger than 6999 in low resolution, or 99999 in high resolution format is stored as the maximum number). Change the datalogger program.
Campbell Scientific Companies

Campbell Scientific, Inc. (CSI)
815 West 1800 North
Logan, Utah 84321
UNITED STATES
www.campbellsci.com
info@campbellsci.com

Campbell Scientific Africa Pty. Ltd. (CSAf)
PO Box 2450
Somerset West 7129
SOUTH AFRICA
www.csafrica.co.za
sales@csafrica.co.za

Campbell Scientific Australia Pty. Ltd. (CSA)
PO Box 444
Thuringowa Central
QLD 4812 AUSTRALIA
www.campbellsci.com.au
info@campbellsci.com.au

Campbell Scientific do Brazil Ltda. (CSB)
Rua Luisa Crapsi Orsi, 15 Butantã
CEP: 005543-000 São Paulo SP BRAZIL
www.campbellsci.com.br
suporte@campbellsci.com.br

Campbell Scientific Canada Corp. (CSC)
11564 - 149th Street NW
Edmonton, Alberta T5M 1W7
CANADA
www.campbellsci.ca
dataloggers@campbellsci.ca

Campbell Scientific Ltd. (CSL)
Campbell Park
80 Hathern Road
Shepshed, Loughborough LE12 9GX
UNITED KINGDOM
www.campbellsci.co.uk
sales@campbellsci.co.uk

Campbell Scientific Ltd. (France)
Miniparc du Verger - Bat. H
1, rue de Terre Neuve - Les Ulis
91967 COURTABOEUF CEDEX
FRANCE
www.campbellsci.fr
campbell.scientific@wanadoo.fr

Campbell Scientific Spain, S. L.
Psg. Font 14, local 8
08013 Barcelona
SPAIN
www.campbellsci.es
info@campbellsci.es

Please visit www.campbellsci.com to obtain contact information for your local US or International representative.