Partial-Hessian Strategies for Fast Learning of Nonlinear Embeddings

Max Vladymyrov and Miguel Á. Carreira-Perpiñán

Electrical Engineering and Computer Science
University of California, Merced
https://eecs.ucmerced.edu

August 30, 2012
Dimensionality reduction

Given a high-dimensional dataset $\mathbf{Y} = (\mathbf{y}_1, \ldots, \mathbf{y}_N) \subset \mathcal{R}^D$ find a low-dimensional representation $\mathbf{X} = (\mathbf{x}_1, \ldots, \mathbf{x}_N) \subset \mathcal{R}^d$ where $d \ll D$.

Can be used for:

- Data compression.
- Visualization.
- Detect latent manifold structure.
- Fast search.
- ...
Graph-based dimensionality reduction techniques

▷ Input: (sparse) affinity matrix W defined on a set of high-dimensional points Y.

▷ Objective function: minimization over the latent points X.

▷ Examples:
 • **Spectral methods**: Laplacian Eigenmaps (LE), LLE;
 ✔ closed-form solution;
 ✗ results can be bad.
 • **Nonlinear methods**: SNE, t-SNE, elastic embedding (EE);
 ✔ better results;
 ✗ slow to train, limited to small data sets.
COIL-20 Dataset

Rotations of 10 objects every 5°; input is greyscale images of 128×128.

\[Y : \quad \begin{array}{cccccccc}
\vdots
\end{array} \]
General Embedding Formulation (Carreira-Perpiñán 2010)

For $\mathbf{Y} \in \mathcal{R}^{D \times N}$ matrix of high-d points and $\mathbf{X} \in \mathcal{R}^{d \times N}$ low-d points

$$E(\mathbf{X}, \lambda) = E^+(\mathbf{X}) + \lambda E^-(\mathbf{X}) \quad \lambda \geq 0$$

$E^+(\mathbf{X})$ is the attractive term:

- often quadratic,
- minimal with coincident points;

$E^-(\mathbf{X})$ is the repulsive term:

- often very nonlinear,
- minimal with points separated infinitely.

Optimal embeddings balance both forces.
General Embedding Formulation: Special Cases

<table>
<thead>
<tr>
<th></th>
<th>(E^+ (\mathbf{X}))</th>
<th>(E^- (\mathbf{X}))</th>
</tr>
</thead>
</table>
| **SNE:** | \[
\sum_{n,m=1}^N p_{nm} \| \mathbf{x}_n - \mathbf{x}_m \|^2
\] | \[
\sum_{n=1}^N \log \sum_{m=1}^N e^{-\| \mathbf{x}_n - \mathbf{x}_m \|^2}
\] |
| (Hinton & Roweis, '03) | | |
| **t-SNE:** | \[
\sum_{n,m=1}^N p_{nm} \log \left(1 + \| \mathbf{x}_n - \mathbf{x}_m \|^2 \right)
\] | \[
\log \sum_{n,m=1}^N \left(1 + \| \mathbf{x}_n - \mathbf{x}_m \|^2 \right)^{-1}
\] |
| (van der Maaten & Hinton, '08) | | |
| **EE:** | \[
\sum_{n,m=1}^N w_{nm}^+ \| \mathbf{x}_n - \mathbf{x}_m \|^2
\] | \[
\sum_{n,m=1}^N w_{nm}^- e^{-\| \mathbf{x}_n - \mathbf{x}_m \|^2}
\] |
| (Carreira-Perpiñán, '10) | | |
| **LE & LLE:** | \[
\sum_{n,m=1}^N w_{nm}^+ \| \mathbf{x}_n - \mathbf{x}_m \|^2
\] s.t. constraints | 0 |
| (Belkin & Niyogi, '03) | | |
| | | |
| | \(w_{nm}^+ \) and \(w_{nm}^- \) are affinity matrices elements | |

\(p_{nm} \) and \(w_{nm} \) are probability and weight matrices elements respectively.
Optimization Strategy

For every iteration k:

1. Choose positive definite B_k.

2. Solve a linear system $B_k p_k = -g_k$ for a search direction p_k, where g_k is the gradient.

3. Use line search to find a step size α for the next iteration $X_{k+1} = X_k + \alpha p_k$ (e.g. with backtracking line search).

Convergence is guaranteed! (under mild assumptions)
How to choose good \mathbf{B}_k?

Solve linear system $\mathbf{B}_k \mathbf{p}_k = -\mathbf{g}_k$:

$\mathbf{B}_k = \mathbf{I}$ (grad. descent) $\xrightarrow{\text{more Hessian information}}$ faster convergence rate $\rightarrow \mathbf{B}_k = \nabla^2 E$ (Newton’s method)

We want \mathbf{B}_k:

- contain as much Hessian information as possible;
- positive definite (pd);
- fast to solve the linear system and scale up to larger N.
The Spectral Direction

The Hessian of the generalized embedding formulation is given by:

\[\nabla^2 E = 4(L^+ - \lambda L^-) \otimes I_d + 8L^{xx} - 16\lambda \text{vec}(XL^q)\text{vec}(XL^q)^T \]

where \(L^+ \), \(L^- \), \(L^{xx} \), \(L^q \) are graph Laplacians.

\(B = 4L^+ \otimes I_d \) is a convenient Hessian approximation:

- block-diagonal and has \(d \) blocks of \(N \times N \) graph Laplacian \(4L^+ \);
- always psd \(\Rightarrow \) global convergence under mild assumptions;
- \textbf{constant} for Gaussian kernel. For other kernels we can fix it at some \(X \);
- equal to the Hessian of the spectral methods: \(\nabla^2 E^+(X) \);
- “bends” the gradient of the nonlinear \(E \) using the curvature of the spectral \(E^+ \);
The Spectral Direction (computation)

Solve $Bp_k = g_k$ efficiently for every iteration k (naively $O(N^3d)$):

- Cache Cholesky factor of L^+ in first iteration.
- (Further) sparsify the weights of L^+ with a κ-NN graph. Runtime is faster and convergence is still guaranteed.

<table>
<thead>
<tr>
<th></th>
<th>Cost per iteration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Objective function</td>
<td>$O(N^2d)$</td>
</tr>
<tr>
<td>Gradient</td>
<td>$O(N^2d)$</td>
</tr>
<tr>
<td>Spectral direction</td>
<td>$O(N\kappa d)$</td>
</tr>
</tbody>
</table>

This strategy adds almost no overhead when compared to the objective function and the gradient computation.
Experimental Evaluation: Methods Compared

Now:

- Gradient descent (GD), $B = I$
 (Hinton & Roweis, '03)
- fixed-point iterations (FP), $B = 4D^+ \otimes I_d$
 (Carreira-Perpiñán, '10)
- Spectral direction (SD), $B = 4L^+ \otimes I_d$
- L-BFGS.

More experiments and methods at the poster:

- Hessian diagonal update;
- nonlinear Conjugate Gradient;
- some other interesting partial-Hessian update.
COIL-20. Convergence analysis, s-SNE

COIL-20 dataset of rotated objects ($N = 720$, $D = 16384$, $d = 2$). Run the algorithms 50 times for 30 seconds each initialized randomly.

![Animation](image.png)
MNIST. \textit{t-SNE}

- $N = 20\,000$ images of handwritten digits (each a 28×28 pixel grayscale image, $D = 784$).
- One hour of optimization on a modern computer with one CPU.
Conclusions

- We presented a common framework for many well-known dimensionality reduction techniques.
- We presented the **spectral direction**: a new simple, generic and scalable optimization strategy that runs one to two orders of magnitude faster compared to traditional methods.

Ongoing work:

- The evaluation of E and ∇E remains the bottleneck ($\mathcal{O}(N^2d)$). We can use Fast Multipole Methods to speed up the runtime.
- Avoid line search, use constant, near-optimal step sizes.
MNIST. Embedding after 20 min of EE optimization

Fixed-point iteration

Spectral direction

Animation
COIL-20. Convergence to the same minimum, s-SNE

We initialized X_0 close enough to X_∞ so that all methods have the same initial and final points.
COIL-20: Homotopy optimization for EE

Start with small λ where E is convex and follow the path of minima to desired λ by minimizing over X as λ increases. We used 50 log-spaced values from 10^{-4} to 10^2.

![Graph showing the number of iterations and time as λ varies](chart.png)