N LINEAR-TIME TRAINING OF NONLINEAR _
| LOW-DIMENSIONAL EMBEDDINGS STALS

" Max Vladymyrov and Miguel A. Carreira-Perpifian, UC Merced, USA &

Abstract Optimization with inexact gradient | _ \

Nonlinear embeddings such as stochastic neighbor embedding or e Each iteration % incurs a small error e;. TN Xk T €
the elastic embedding achieve better results than SpeC’[raI methods Model €. as zero-mean Gaussian noise _/\/'(()7 521) /y /74/ ~
Igut requi(e an expens.ive, nonconvex thimization, wherg the objec- (assume non systematic error). | @
tive function and gradient are quadratic on the sample size. We ad- 4 yariance ¢ is a model parameter that represents

dreSS th|S bOttleneCk by fOrmU|atIng the Opt|m|zat|0n dS an N'bOdy the aCCuracy Of the apprOXimatiOn_ | N |
problem and using fast multipole methods (FMMs) to approximate 4 \ean of the error (E(X + €) — E(X)) = L6211 (V2E(X)) + O(€Y).

the gradient in linear time. We study the effect, in theory and exper- | o o

iment, of approximating gradients in the optimization and show that W€ can make the following qualitative prediction:

the expected error is related to the mean curvature of the objective  ®Adding noise is beneficial if the mean  Input: (1) initial X,
function, and that gradually increasing the accuracy level inthe FMM  curvature tr (V’E(X)) is negative. (2) sparse affinities W,

over iterations leads to a faster training. When combined with stan- e Near the minimizer the mean curva- ~ (3) non-decreasing accuracy
dard optimizers, such as gradient descent or L-BFGS, the result-  ture is positive =- no gains from the  (po,p1...),

ing algorithm beats the O(N log N) Barnes-Hut method and achieves approximation. (4) step size 1.

reasonable embeddings for one million points in three hours. We suggest starting with relatively low for £ = 0 to maxit do

accuracy and increasing it progressively: ~ €val. approx. gradient G,
eval. direction P,.

Nonlinear Embedding Methods » Cheap initial iterations. | X1 = X; + 0Py
e Far from the minimizer = benefit from end for

Given the symmetric nonnegative affinity matrix W defined for a high-d the noise whenever the mean curva- 7
data set Yp«y = (y1,...,yn) nonlinear embeddings (NLE) find low- ture is negative.
d projection X,y = (xi,...,xy) by minimizing: E(X:A) = T e Analogous to simulated annealing = increasing the accuracy avoids

AE~(X), with A > 0. For example, in the Elastic Embedding algorithm wandering behavior.
the objective function and the gradient are given by:

Eeg(X) = + A S(x0),

Role of changing the accuracy in inexact optimization

- ‘ ‘ ‘ ‘
Gee(X) = 4XL — 4) (X diag (S(X)) + Sf’f(X)). S, 28887654321 ~ Approximate
where E |
N N <1>>1000
S(x,) = Y exp(— %, — xl]") @nd 57(x) = Y xpmexp(— [Ix, — xl[*). E
m=1 m=1 D 500
e Vladymyrov and Carreira-Perpifian (2012) achieve the best descent & w w w x | =
per teration for NLE methods. Hovflever,)no matter how good is the ° “terations’ T 1()F%urﬁgimecfo\c, % Plterations 7
optimization algorithm, it still requires computation of the gradient for
every iteration. Experiments
e The bottleneck of NLE is the O(N?*) computation of S(x,) and S%(x,,) P | o
that are represented by N-Body problem. e 1 020 000 points from infiniteMNIST.
e Elastic Embedding algorithm (A = 10~%) optimized with gradient de-
N-Body Methods scent (GD), fixed point iterations (FP) and L-BFGS.

| | e Fixed step size. The accuracy grows from p = 1 to 10 for the first 100
1. Tree-based methods Build a high-d tree around the dataset. Save  iterations.

by replacing point-point interactions with node-point or node-node ones.

107__ —————
Complexity O(N log N). Focus on Barnes-Hut algorithm: .§ | N
e Preprocess: build a quadtree around the dataset saving the center of & 0. FM
mass c for every cell. "3 FP, FMM
e Query: for every point x traverse down the tree computing the size of .2 06| _E'SFE?HS’ "
the current cell [ and the distance to its centroid D. If [/D < 0 = use e |- - FR.BH -
an interaction between x and c for all the points in that cell. Q (oo LBRESEH TR @ TS
_ . O 7 10 2 ¢ L 2 3 4 5 6 7 8 9 10 11
e Accuracy: controlled by 6. Bigger values = larger speed-up, also lteration&? Runtime, hours
larger error.
N — FGT, L-BFGS, 3 hours BH, L-BFGS, 3 hours
D. - DE _ | E = 521666, 221 Iter. E =1079357,32 iter.
c: . E E ’
.X/L/'. """""" = .’i\ 0 0
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2. Fast Multipole Methods Decouple x,, and x,, using a series expan-
sion:

Q%) = S A K (1050 = %00) /0]1%) & sy (Fal0) S ga0))

f and ¢ are some functions and « is a multi-index notation a > 0 = ay, . . ., ag > 0.

Computation complexity is O(N).

e Preprocess: divide X into boxes. Many points = expand around the
center of mass.

e Query: (1) ignore interactions between distant boxes; (2) many points @ Conclusions

per box = use center of mass, otherwise — com.pute exactly. e N-Body methods address the main bottleneck of nonlinear embedding
o Accuracy: controlled by the number of expansion p. More terms = methods: quadratic cost of the objective function and the gradient.

more accurate expansion, larger runtime. e Fast Multipole Methods are more beneficial than Barnes-Hut both the-

§><< . \ oretically and empirically (4 — 7x speedup for million size dataset).
. ﬁé
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- —] e Gradual increase of the accuracy parameter is advisable.
e MATLAB code: http://eecs.ucmerced. edu.
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