Meta-Learning
Bidirectional Update Rules

Mark Sandler
Max Vladymyrov
Andrey Zhmoginov
Nolan Miller

Andrew Jackson
Tom Madams
Blaise Agüera y Arcas
Stochastic Gradient Descent

- Requires a **predefined loss function** computed for every iteration.
- Synapse update is computed via **backpropagation** of the loss function.
- Optimization procedure is **independent** from the dataset.
SGD using two-state neurons

Backpropagation can be equivalently reformulated with generalized two-state neurons \(a_j^c \) where \(j \) is a layer and \(c \in \{0, 1\} \) is a state.
Bidirectional Learning Update Rules

Forward pass: \[a_j^c \leftarrow \sigma(f a_j^c + \eta \sum_{i,d} w_{ij}^c v^{cd} a_i^d) \]

Backward pass: \[a_i^c \leftarrow \sigma(f a_i^c + \eta \sum_{j,d} w_{ji}^c \mu^{cd} a_j^d) \]

Weights update: \[w_{ij}^c \leftarrow \tilde{f} w_{ij}^c + \tilde{\eta} \sum_{e,d} a_i^e \tilde{v}^{ec} \cdot \tilde{\mu}^{cd} a_j^d \]
Bidirectional Learning Update Rules

Generalized formulation allows for more than two neuron states.

Forward pass:
\[
a_{j}^{c} \leftarrow \sigma \left(a_{j}^{c} + \eta \sum_{i,d} w_{ij}^{c} \nu^{cd} a_{i}^{d} \right)
\]

Backward pass:
\[
a_{i}^{c} \leftarrow \sigma \left(f a_{i}^{c} + \eta \sum_{j,d} w_{ji}^{c} \mu^{cd} a_{j}^{d} \right)
\]

Weights update:
\[
\Delta w_{ij}^{c} \leftarrow \tilde{f} w_{ij}^{c} + \tilde{\eta} \sum_{e,d} a_{i}^{e} \tilde{\nu}^{ec} \cdot \tilde{\mu}^{cd} a_{j}^{d}
\]
Bidirectional Learning Update Rules

Distinct *forward* and *backward* synapses (removing weight transport problem).

Forward pass: \[a_j^c \leftarrow \sigma \left(f a_j^c + \eta \sum_{i,d} w_{ij}^c \nu^{cd} a_i^d \right) \]

Backward pass: \[a_i^c \leftarrow \sigma \left(f a_i^c + \eta \sum_{j,d} w_{ji}^c \mu^{cd} a_j^d \right) \]

Weights update: \[w_{ij}^c \leftarrow \tilde{f} w_{ij}^c + \tilde{\eta} \sum_{e,d} a_i^e \tilde{\nu}^{ec} \cdot \tilde{\mu}^{cd} a_j^d \]
Bidirectional Learning Update Rules

Meta-learned *transform* matrices for interaction between the neuron states.

Forward pass:
\[a_j^c \leftarrow \sigma \left(f a_j^c + \eta \sum_{i,d} w_{ij}^c \nu^{cd} a_i^d \right) \]

Backward pass:
\[a_i^c \leftarrow \sigma \left(f a_i^c + \eta \sum_{j,d} w_{ji}^c \mu^{cd} a_j^d \right) \]

Weights update:
\[w_{ij}^c \leftarrow \tilde{f} w_{ij}^c + \tilde{\eta} \sum_{e,d} a_i^e \tilde{\nu}^{ec} \cdot \tilde{\mu}^{cd} a_j^d \]
Bidirectional Learning Update Rules

Non-linear activations for forward and backward pass.

Forward pass:
\[a_j^c \leftarrow \sigma (f a_j^c + \eta \sum_{i,d} w_{ij}^c \nu^{cd} a_i^d) \]

Backward pass:
\[a_i^c \leftarrow \sigma (f a_i^c + \eta \sum_{j,d} w_{ji}^c \mu^{cd} a_j^d) \]

Weights update:
\[w_{ij}^c \leftarrow \tilde{f} w_{ij}^c + \tilde{\eta} \sum_{e,d} a_i^e \tilde{\nu}^{ec} \cdot \tilde{\mu}^{cd} a_j^d \]
Bidirectional Learning Update Rules

Meta-learned keep and update parameters for neuron update.

Forward pass: \[a_j^c \leftarrow \sigma \left(f a_j^c + \eta \sum_{i,d} w_{ij}^c \nu^{cd} a_i^d \right) \]

Backward pass: \[a_i^c \leftarrow \sigma \left(f a_i^c + \eta \sum_{j,d} w_{ij}^c \mu^{cd} a_j^d \right) \]

Weights update: \[w_{ij}^c \leftarrow \tilde{f} w_{ij}^c + \tilde{\eta} \sum_{e,d} a_i^e \tilde{\nu}^{ec} \cdot \tilde{\mu}^{cd} a_j^d \]
Bidirectional Learning Update Rules

No more loss function. Feedback is passed directly to one of the states.

Forward pass: \(a^c_j \leftarrow \sigma(fa^c_j + \eta \sum_{i,d} w^c_{ij} \nu^{cd} a^d_i) \)

Backward pass: \(a^c_i \leftarrow \sigma(fa^c_i + \eta \sum_{j,d} w^c_{ji} \mu^{cd} a^d_j) \)

Weights update: \(w^c_{ij} \leftarrow \tilde{f}w^c_{ij} + \tilde{\eta} \sum_{e,d} a^e_i \tilde{\nu}^{ec} \cdot \tilde{\mu}^{cd} a^d_j \)
Bidirectional Learning Update Rules

Forward pass: \[a^c_j \leftarrow \sigma \left(f a^c_j + \eta \sum_{i,d} w^c_{ij} \nu^{cd} a^d_i \right) \]

Backward pass: \[a^c_i \leftarrow \sigma \left(f a^c_i + \eta \sum_{j,d} w^c_{ji} \nu^{cd} a^d_j \right) \]

Weights update: \[w^c_{ij} \leftarrow \tilde{f} w^c_{ij} + \tilde{\eta} \sum_{e,d} a^e_i \tilde{\nu}^{ec} \cdot \tilde{\nu}^{cd} a^d_j \]

Multistate synapses.
Bidirectional Learning Update Rules

Forward pass: \[a_j^c \leftarrow \sigma(f a_j^c + \eta \sum_{i,d} w_{ij}^c \nu_{i,d} a_i^d) \]

Backward pass: \[a_i^c \leftarrow \sigma(f a_i^c + \eta \sum_{j,d} w_{ij}^c \mu_{j,d} a_j^d) \]

Weights update: \[w_{ij}^c \leftarrow \tilde{f} w_{ij}^c + \tilde{\eta} \sum_{e,d} a_i^e \tilde{\nu}_{i,d} \cdot \tilde{\mu}_{j,d} a_j^d \]

Meta-learned transform matrices for interaction between the neuron and synapse states.
Bidirectional Learning Update Rules

Forward pass: \[a_j^c \leftarrow \sigma(f a_j^c + \eta \sum_{i,d} w_{ij}^c \nu_{cd} a_i^d) \]

Backward pass: \[a_i^c \leftarrow \sigma(f a_i^c + \eta \sum_{j,d} w_{ji}^c \mu_{cd} a_j^d) \]

Weights update: \[w_{ij}^c \leftarrow \tilde{f} w_{ij}^c + \tilde{\eta} \sum_{e,d} a_i^e \tilde{\nu}_{ec} \cdot \tilde{\mu}_{cd} a_j^d \]

Meta-learned keep and update parameters for synapse update.
Bidirectional Learning Update Rules

States
- k neuron states.
- k synapse states (possibly asymmetric).

Feedback
Passed directly to the final layer.

Forward pass
- All states are updated via learnable transform matrix.
- Same activation functions for each state.
- Keep and update are learned parameters.

Backward pass
- All states are updated via learnable transform matrix.
- Same activation functions for each state.
- Keep and update are learned parameters.

Synapse update
- All states from presynaptic and postsynaptic are mixed together.
- Keep and update are learned parameters.

Forward pass: \[a_j^c \leftarrow \sigma \left(f a_j^c + \eta \sum_{i,d} w_{ij}^c \nu^{cd} a_i^d \right) \]

Backward pass: \[a_i^c \leftarrow \sigma \left(f a_i^c + \eta \sum_{j,d} w_{ji}^c \mu^{cd} a_j^d \right) \]

Weights update: \[w_{ij}^c \leftarrow \tilde{f} w_{ij}^c + \tilde{\eta} \sum_{e,d} a_i^e \tilde{\nu}^{ec} \cdot \tilde{\mu}^{cd} a_j^d \]
Meta-learning BLUR

- **Prediction:** use first state of the last layer of a given unroll.
- **Train:** compute loss at a given unroll number.
- **Test:** run validation batch through learned synapses and meta-parameters.
- **Optimize:** using SGD or CMA-ES.
Meta-generalization of BLUR

Training datasets

<table>
<thead>
<tr>
<th>Ground truth</th>
</tr>
</thead>
<tbody>
<tr>
<td>xor</td>
</tr>
<tr>
<td>and</td>
</tr>
<tr>
<td>twomoon</td>
</tr>
<tr>
<td>centercirc</td>
</tr>
<tr>
<td>smallcentercirc</td>
</tr>
<tr>
<td>pieslice</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prediction</th>
</tr>
</thead>
<tbody>
<tr>
<td>xor</td>
</tr>
<tr>
<td>and</td>
</tr>
<tr>
<td>twomoon</td>
</tr>
<tr>
<td>centercirc</td>
</tr>
<tr>
<td>smallcentercirc</td>
</tr>
<tr>
<td>pieslice</td>
</tr>
</tbody>
</table>

Validation datasets

<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>blob5x1</td>
</tr>
<tr>
<td>cross</td>
</tr>
<tr>
<td>triangle</td>
</tr>
</tbody>
</table>

Accuracy vs. Unroll steps

- **mnist:0-9**
- **emnist:0-9**
- **emnist:10-19**
- **fashion:0-9**
- **emnist:0-62**
Conclusions

- BLUR defines a **meta-learned synapse update rules** that has very mild assumptions on the inner-loop:
 - **no loss functions**,
 - **no explicit gradients**.
- Trained with SGD or CMA for a **fix number of unrolls**.
- BLUR generalizes SGD:
 - **multistate neurons**,
 - **asymmetric, multistate** synapses,
 - **backward activations and normalization**.
- BLUR is **meta-generalizable**:
 - unseen datasets (MNIST → Fashion),
 - novel input data sizes (10x10 → 28x28),
 - novel architectures (deeper → shallower).