Hydroclimate, ecosystem links & the Southern Sierra Critical Zone Observatory
Roger Balesa, Carolyn Hunsakerb, Peter Kirchnera, Martha Conklinb, Ryan Lucasa
aSierra Nevada Research Institute, UC Merced; bPacific Southwest Research Station, U.S. Forest Service

The Southern Sierra Critical Zone Observatory (CZO) is designed as a platform for integrated, multi-disciplinary research and scientific information that will provide a process-level understanding of the critical zone, establish a foundation for long-term hydroclimatic, biogeochemical and ecological studies, and improve the predictive ability of Earth system models. Integrated studies of the Earth’s “critical zone”, which extends from the top of vegetation down through groundwater, are the focus of emerging research initiatives in the U.S. and Europe. Resulting coordinated, multidisciplinary research will yield new understanding and a better predictive ability of how ecosystems such as found in the Southern Sierra will respond to shifts in climate and human activities.

Our spatial sampling strategy is to capture key topographic features (slope, aspect, elevation, soil depth) and use multiple tracers to characterize both longer term processes and short term responses to current conditions.

The KREW location is in a mixed conifer forest, crossing the rain-snow transition zone (1,500-2,000 m), a zone that characteristically undergoes rapid seasonal changes, going from snowcover to wet soil to dry soil over a 1-2 month period. Steep gradients in temperature and precipitation patterns, along both elevation and aspect, result in a distinct lag in spring runoff in going from lower to higher elevation.

KREW includes 8 instrumented headwater catchments crossing the rain-snow transition, from about 1,460 to 2,450 m (4,870-8,170 ft) elevation. The Providence catchments at KREW are the focus of the CZO activities. Catchment sizes are in the range 49-228 ha (121-563 ac).

Annual discharge in the 8 KREW catchments increases with elevation in both wet and dry years, with precipitation differing little along the elevation gradient. For each year, catchments are listed in order of average elevation, i.e., D102 is the lowest and B203 the highest. Horizontal bar shows annual precipitation amount.

Water retention in KREW catchments decreases along the elevation gradient, i.e. later snowmelt & more snowfall/rain at higher elevations, but there are distinct wet/dry year patterns.

Timing of precipitation, snow accumulation/melt and stream discharge across KREW catchments. Precipitation amount & timing were the same at all 4 weather stations across the KREW elevation gradient. Snow accumulation differed by a factor of 3 & the timing of melt by over 1 month across the rain-snow transition of the KREW catchments. Similarly, runoff at the higher catchments lagged that at the lower catchments by about one month.

The spring transition in streamflow, from being snowmelt dominated to evapotranspiration (ET) dominated, lags by 1-2 months form the lowest (D102) to highest (B204) KREW catchment. Daily snowmelt peaks in streamflow occur in the late evening, with minima in the morning. In periods with streamflow dominated by ET, peaks occur in the morning, with minima after noon.

The Southern Sierra CZO is designed as a Southern Sierra Critical Zone Observatory platform for integrated, multi-disciplinary research and scientific information that will provide a process-level understanding of the critical zone, establish a foundation for long-term hydroclimatic, (bio)geochemical and ecological studies, and improve the predictive ability of Earth system models. Integrated studies of the Earth’s “critical zone”, which extends from the top of vegetation down through groundwater, are the focus of emerging research initiatives in the U.S. and Europe. Resulting coordinated, multidisciplinary research will yield new understanding and a better predictive ability of how ecosystems such as found in the Southern Sierra will respond to shifts in climate and human activities.

Note that temperature rises above 0°C on 5/6, and the snow depth starts to decline on 5/8. Soil moisture (volumetric water content) declines prior to snowmelt, i.e. soil is draining. But soil moisture rises on 5/7 and exhibits a diel cycle beginning on 5/8, coincident with snowmelt. Note also that soil moisture peaks each day about 3 hr after temperature, i.e. 3 hr after snowmelt peaks.

Consistent, sustained, high-frequency data are key to observing how streamflow, soil moisture & evapotranspiration respond to both seasonal transitions & longer-term changes.

KREW includes 8 instrumented headwater catchments crossing the rain-snow transition, from about 1,460 to 2,450 m (4,870-8,170 ft) elevation. The Providence catchments at KREW are the focus of the CZO activities. Catchment sizes are in the range 49-228 ha (121-563 ac).

Note that temperature rises above 0°C on 5/6, and the snow depth starts to decline on 5/8. Soil moisture (volumetric water content) declines prior to snowmelt, i.e. soil is draining. But soil moisture rises on 5/7 and exhibits a diel cycle beginning on 5/8, coincident with snowmelt. Note also that soil moisture peaks each day about 3 hr after temperature, i.e. 3 hr after snowmelt peaks.

Consistent, sustained, high-frequency data are key to observing how streamflow, soil moisture & evapotranspiration respond to both seasonal transitions & longer-term changes.

The Southern Sierra CZO is designed as a platform for integrated, multi-disciplinary research and scientific information that will provide a process-level understanding of the critical zone, establish a foundation for long-term hydroclimatic, biogeochemical and ecological studies, and improve the predictive ability of Earth system models. Integrated studies of the Earth’s “critical zone”, which extends from the top of vegetation down through groundwater, are the focus of emerging research initiatives in the U.S. and Europe. Resulting coordinated, multidisciplinary research will yield new understanding and a better predictive ability of how ecosystems such as found in the Southern Sierra will respond to shifts in climate and human activities.

KREW includes 8 instrumented headwater catchments crossing the rain-snow transition, from about 1,460 to 2,450 m (4,870-8,170 ft) elevation. The Providence catchments at KREW are the focus of the CZO activities. Catchment sizes are in the range 49-228 ha (121-563 ac).

Note that temperature rises above 0°C on 5/6, and the snow depth starts to decline on 5/8. Soil moisture (volumetric water content) declines prior to snowmelt, i.e. soil is draining. But soil moisture rises on 5/7 and exhibits a diel cycle beginning on 5/8, coincident with snowmelt. Note also that soil moisture peaks each day about 3 hr after temperature, i.e. 3 hr after snowmelt peaks.

Consistent, sustained, high-frequency data are key to observing how streamflow, soil moisture & evapotranspiration respond to both seasonal transitions & longer-term changes.

KREW includes 8 instrumented headwater catchments crossing the rain-snow transition, from about 1,460 to 2,450 m (4,870-8,170 ft) elevation. The Providence catchments at KREW are the focus of the CZO activities. Catchment sizes are in the range 49-228 ha (121-563 ac).

Note that temperature rises above 0°C on 5/6, and the snow depth starts to decline on 5/8. Soil moisture (volumetric water content) declines prior to snowmelt, i.e. soil is draining. But soil moisture rises on 5/7 and exhibits a diel cycle beginning on 5/8, coincident with snowmelt. Note also that soil moisture peaks each day about 3 hr after temperature, i.e. 3 hr after snowmelt peaks.

Consistent, sustained, high-frequency data are key to observing how streamflow, soil moisture & evapotranspiration respond to both seasonal transitions & longer-term changes.

KREW includes 8 instrumented headwater catchments crossing the rain-snow transition, from about 1,460 to 2,450 m (4,870-8,170 ft) elevation. The Providence catchments at KREW are the focus of the CZO activities. Catchment sizes are in the range 49-228 ha (121-563 ac).

Note that temperature rises above 0°C on 5/6, and the snow depth starts to decline on 5/8. Soil moisture (volumetric water content) declines prior to snowmelt, i.e. soil is draining. But soil moisture rises on 5/7 and exhibits a diel cycle beginning on 5/8, coincident with snowmelt. Note also that soil moisture peaks each day about 3 hr after temperature, i.e. 3 hr after snowmelt peaks.

Consistent, sustained, high-frequency data are key to observing how streamflow, soil moisture & evapotranspiration respond to both seasonal transitions & longer-term changes.

KREW includes 8 instrumented headwater catchments crossing the rain-snow transition, from about 1,460 to 2,450 m (4,870-8,170 ft) elevation. The Providence catchments at KREW are the focus of the CZO activities. Catchment sizes are in the range 49-228 ha (121-563 ac).

Note that temperature rises above 0°C on 5/6, and the snow depth starts to decline on 5/8. Soil moisture (volumetric water content) declines prior to snowmelt, i.e. soil is draining. But soil moisture rises on 5/7 and exhibits a diel cycle beginning on 5/8, coincident with snowmelt. Note also that soil moisture peaks each day about 3 hr after temperature, i.e. 3 hr after snowmelt peaks.

Consistent, sustained, high-frequency data are key to observing how streamflow, soil moisture & evapotranspiration respond to both seasonal transitions & longer-term changes.

KREW includes 8 instrumented headwater catchments crossing the rain-snow transition, from about 1,460 to 2,450 m (4,870-8,170 ft) elevation. The Providence catchments at KREW are the focus of the CZO activities. Catchment sizes are in the range 49-228 ha (121-563 ac).

Note that temperature rises above 0°C on 5/6, and the snow depth starts to decline on 5/8. Soil moisture (volumetric water content) declines prior to snowmelt, i.e. soil is draining. But soil moisture rises on 5/7 and exhibits a diel cycle beginning on 5/8, coincident with snowmelt. Note also that soil moisture peaks each day about 3 hr after temperature, i.e. 3 hr after snowmelt peaks.

Consistent, sustained, high-frequency data are key to observing how streamflow, soil moisture & evapotranspiration respond to both seasonal transitions & longer-term changes.