High-Order P_N Approximations for Radiative Transfer in Arbitrary Geometries

by J. YANG and M. F. MODEST*

Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, PA 16802, USA, *mfm@michelle.mne.psu.edu

Abstract
A new methodology is presented for the application of the spherical harmonics method (P_N) to decompose the radiative transfer equation (RTE) into a set of coupled second-order partial differential equations, allowing for variable properties and arbitrary three-dimensional geometries. The proposed methodology employs successive elimination of spherical harmonic tensors, thus reducing the number of first-order partial differential equations needed to be solved simultaneously by previous P_N approximations ($= (N+1)^2$). The result is a relatively small set ($= N(N+1)/2$) of second-order, elliptic partial differential equations, which can be solved with standard PDE solution packages. Moreover, the general boundary conditions and supplementary conditions to be used in the P_N approximation are formulated for arbitrary three-dimensional geometries. Numerical computations are carried out with the P_3 approximation for several one-dimensional and two-dimensional problems with emitting, absorbing and scattering media, using both constant and variable properties. Results are compared to analytical solutions and discrete ordinates simulations and a discussion of ray effects and false scattering is provided.

Nomenclature

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_i</td>
<td>Scattering coefficients</td>
</tr>
<tr>
<td>D_{nmw}</td>
<td>Wigner function</td>
</tr>
<tr>
<td>J</td>
<td>Radiative Intensity</td>
</tr>
<tr>
<td>I^m_n</td>
<td>Coefficient function</td>
</tr>
<tr>
<td>J</td>
<td>Spherical harmonics series</td>
</tr>
<tr>
<td>L</td>
<td>Differential operator</td>
</tr>
<tr>
<td>P_n^m</td>
<td>Legendre polynomials</td>
</tr>
<tr>
<td>R</td>
<td>Vector length</td>
</tr>
<tr>
<td>\hat{s}, \vec{s}</td>
<td>(Unit) direction vector</td>
</tr>
<tr>
<td>Y^m_n</td>
<td>Spherical harmonics</td>
</tr>
<tr>
<td>τ</td>
<td>Optical coordinate</td>
</tr>
<tr>
<td>ϕ</td>
<td>Azimuthal angle</td>
</tr>
<tr>
<td>Φ</td>
<td>Scattering phase function</td>
</tr>
<tr>
<td>ω</td>
<td>Single scattering albedo</td>
</tr>
<tr>
<td>Ω</td>
<td>Solid angle</td>
</tr>
</tbody>
</table>

Subscripts
- b: blackbody
- w: wall

1. Introduction

Exact analytical solutions to the equation of radiative transfer are exceedingly difficult to obtain and explicit solutions are only possible for very simple situations, such as one-dimensional plane-parallel media without scattering. For more complicated scenarios, which may involve radiative equilibrium, multi-dimensional irregular geometry, anisotropic scattering or inhomogeneous media, several approximate methods have been developed over time. Among these
approximate methods, the *Spherical Harmonics Method* or a variation of it, the *Discrete Ordinates Method* or the *Finite Volume Method*, the *Zonal Method* and the *Monte Carlo method* have been used most frequently for the majority of radiative heat transfer analysis [1]. Unlike the *Zonal Method*, both the *Spherical Harmonics Method* and DOM/FVM approximate the directional variation of the radiative intensity rather than its spatial behavior. However, the underlying approaches to represent the directional dependence of radiative intensity for SHM and DOM/FVM are quite different. The DOM employs a discrete representation of the directional variation with integrals over total solid angle 4π obtained via numerical quadrature, while the SHM captures the directional distribution of intensity by expressing it into a series of spherical harmonics. The DOM/FVM method is relatively simple to implement, but has several drawbacks, such as the fact that an iterative solution is required in the presence of scattering media or reflecting walls. In addition, its convergence is known to slow down for optically thick media. Furthermore, DOM may suffer ray effects and possibly false scattering due to its angular discretization (Chai, Lee and Patanker [2]). Statistical methods like the *Monte Carlo method* can solve the most complicated problems with relative ease, but they are always subject to statistical error and require great computational power. The *Spherical Harmonics Method* has several advantages over other approximation methods: first, it converts the integro-differential RTE into relatively simple partial differential equations, which can be solved by using standard PDE solver packages. In this study, a set of coupled second-order PDEs is derived for an arbitrary order P_N approximation. Second, since the SHM is a spectral method, it should require fewer terms than DOM for similar accuracy. Unlike DOM/FVM, CPU time requirements for SHM do not increase for scattering media and reflecting walls.

The lowest-order P_N approximation, the P_1-approximation, has enjoyed great popularity because of its relative simplicity and compatibility with standard methods for the solution of the energy equation [1]. However, the P_1-approximation performs poorly in the optically thin limit and other nonisotropic radiative intensity fields. On the downside, mathematical complexity increases rapidly if higher-order P_N approximations for multi-dimensional geometry are desired, which is probably responsible for the fact that its development lags behind that for the DOM/FVM.

A number of higher-order P_N approximations have been formulated for specific geometries by exploiting the symmetry of the media confined in either one-dimensional slabs, concentric cylinders or concentric spheres. Kofink [3] gave a general P_N-approximation for one-dimensional cylindrical media when solving the Boltzmann equation for neutron transport. Bayazitoglu and Higenyi [4] limited their development to the P_3 calculation of one-dimensional cylindrical and spherical media. Tong and Swathi [5] obtained higher-order solutions up to P_{11} for an anisotropically scattering medium between one-dimensional concentric spheres. Ratzel and Howell [6] studied a gray absorbing and emitting medium in a two-dimensional rectangular enclosure using the moments of intensity based on the P_3 differential approximation. Similarly, Menguc and Viskanta [7] also numerically investigated the P_1- and P_3-approximations in a three-dimensional rectangular enclosure by employing the moments of intensity. For general geometries with isotropic scattering, Davison [8] has formulated a P_N-transformation of the
Boltzmann equation into \((N + 1)^2\) PDEs for constant property media. Finally, Ou and Liou [9] derived the three-dimensional \(P_N\) approximation for arbitrary coordinate systems resulting in a set of \((N + 1)^2\) complex, coupled, first-order PDEs similar to DOM, without, however, discussing boundary conditions. Here we present a new generic methodology that decomposes the radiative transfer equation (RTE) into \(N(N + 1)/2\) coupled second-order elliptic partial differential equations for a given odd order \(N\), allowing for variable properties and arbitrary three-dimensional geometries. The formulation is accompanied by a set of generic boundary conditions.

The methodology is outlined in detail for the \(P_3\)-approximation, and tested extensively with several one- and two-dimensional problems, with constant as well as variable properties, by comparison with analytical as well as DOM/FVM results.

2. Mathematical Formulation

For a given location \(\tau\) under optical coordinates based on the extinction coefficient \(\beta\), i.e., \(d\tau = \beta ds\), where \(s\) is path length, let \(\vec{s}'\) be a vector of arbitrary magnitude \(R\), such that \(\vec{s}' = R\hat{s}\), with \(\hat{s}\) being a unit direction vector. Following Davison [8], we may express the intensity field \(I(\tau, \hat{s})\) in terms of an infinite series

\[
I(\tau, \hat{s}) = \frac{1}{4\pi} \sum_n [(2n + 1)J_n(\tau, \hat{s})]_{R=1},
\]

where

\[
J_n = \frac{1}{2n + 1} \sum_{m=-n}^{n} I_n^m(\tau)Y_n^m(\hat{s}).
\]

In Eq. (2) the \(I_n^m(\tau)\) are location-dependent coefficient functions associated with a given spherical harmonic \(Y_n^m(\vec{s})\), while directional-dependency of the intensity field is resolved in terms of a series of integral-degree real spherical harmonics defined as (MacCrobert [10])

\[
Y_n^m(R, \theta, \phi) = \begin{cases}
R^n \cos(m\phi)P_n^m(\cos \theta), & \text{for } m \geq 0, \\
R^n \sin(m\phi)P_n^m(\cos \theta), & \text{for } m < 0,
\end{cases}
\]

and \(P_n^m(\cos \theta)\) are associated Legendre polynomials.

The general equation of radiative transfer has the form [1]

\[
\hat{s} \cdot \nabla_\tau I + I = (1 - \omega)I_b + \frac{\omega}{4\pi} \int_{4\pi} I(\hat{s}')\Phi(\hat{s} \cdot \hat{s}')d\Omega',
\]

where \(\omega\) is the single scattering albedo, \(\Phi\) is the scattering phase function and \(\omega\) is solid angle. The intensity gradient, \(\nabla_\tau\), along direction \(\hat{s}\) is written in terms of nondimensional optical
coordinates. Substituting Eq. (1) into the RTE, we find
\[
\left[\sum_{n=0}^{N} (2n+1)\hat{s} \cdot \nabla_{\tau} J_n \right]_{R=1} = - \left[\sum_{n=0}^{N} (2n+1)J_n \right]_{R=1} + (1 - \omega)4\pi I_b
\]
\[\text{(5)}\]
\[\text{where}\]
\[\alpha_n = (2n+1) - \omega A_n, \quad (7)\]
and \(\delta_{n0}\) is Kronecker’s delta.

Since we have collected the \(n\)th order harmonics, Eq. (6) constitutes a set of \(2n+1\) independent PDEs of first order in space. However, to construct elliptic second order PDEs and, thus, to reduce the number of PDEs, every odd order \(J_n\) may be eliminated, leading to
\[
-\nabla_{\tau} \left(\frac{1}{\alpha_{n+1}} \nabla_{\tau} \right) \cdot \nabla_{s} \nabla_{s} J_{n+2} - \nabla_{\tau} \left(\frac{1}{\alpha_{n-1}} \nabla_{\tau} \right) \cdot \nabla_{s} \mathcal{L}_{n-2} J_{n-2} - \\
\n\left[\nabla_{\tau} \left(\frac{1}{\alpha_{n+1}} \nabla_{\tau} \right) \cdot \nabla_{s} \mathcal{L}_{n} - \alpha_{n} + \nabla_{\tau} \left(\frac{1}{\alpha_{n-1}} \nabla_{\tau} \right) : \mathcal{L}_{n-1} \nabla_{s} \right] J_n = 4\pi(1 - \omega)I_b\delta_{n0},
\]
\[\text{(8)}\]
where \(\mathcal{L}_{n-1} = [(2n-1)\hat{s} - R^2\nabla_s]\) is an operator and \(\nabla_s \nabla_s, \nabla_s \mathcal{L}, \mathcal{L} \nabla_s\) and \(\mathcal{L} \mathcal{L}\) are simply different combinations of the two basic operators \(\nabla_s\) and \(\mathcal{L}\). After rather tedious algebra, the three components of the operator \(\nabla_s\) on a given spherical harmonic \(Y^m_n\) is obtained as
\[
\frac{\partial Y^m_n}{\partial s_x} = -\frac{1}{2}(n + m)(n + m - 1)Y^{m+1}_{n-1} + \frac{1}{2}Y^{m+1}_{n-1}, \quad m \geq 1
\]
\[\text{(9a)}\]
\[= Y^{1}_{n-1}, \quad m = 0\]
\[\frac{\partial Y^m_n}{\partial s_y} = -\frac{1}{2}(n - m)(n - m - 1)Y^{m-1}_{n-1}(1 - \delta_{m,-1}) + \frac{1}{2}Y^{m-1}_{n-1}, \quad m \leq -1
\]
\[\text{(9b)}\]
\[= Y^{-1}_{n-1}, \quad m = 0\]
\[\frac{\partial Y^m_n}{\partial s_z} = (n + |m|)Y^{1}_{n-1}, \quad \text{all } m. \quad \text{(9c)}\]
Similarly, $\mathcal{L}_n Y_n^m$ can be shown to be

$$
\mathcal{L}_n, Y_n^m = \frac{1}{2} \left[Y_{n+1}^m - (n - m + 2)(n - m + 1)Y_{n+1}^{m-1} \right], \quad m \geq 1
$$

$$
= - \frac{Y_{n+1}^1}{2n + 1}, \quad m = 0 \quad (10a)
$$

$$
= - \frac{1}{2} \left[Y_{n+1}^{m-1} - (n + m + 2)(n + m + 1)Y_{n+1}^{m+1}(1 - \delta_{m,-1}) \right], \quad m \leq -1
$$

$$
\mathcal{L}_n, Y_n^m = - \frac{1}{2} \left[Y_{n+1}^{m-1} + (n - m + 2)(n - m + 1)Y_{n+1}^{m+1}(1 - \delta_{m,1}) \right], \quad m \geq 1
$$

$$
= - Y_{n+1}^{m-1}, \quad m = 0 \quad (10b)
$$

$$
\mathcal{L}_n, Y_n^m = \frac{n - |m| + 1}{2n + 1} Y_{n+1}^m, \quad \text{all } m. \quad (10c)
$$

Substituting these relations into Eq. (8), it is found that, for an even order n, there are exactly $(2n + 1)$ independent spherical harmonics. Therefore, $(2n + 1)$ independent PDEs can be constructed by collecting spatial derivatives of the I_n^m, corresponding to each independent spherical harmonic. For the P_N-approximation, there are total of $N(N + 1)/2$ PDEs that can be obtained from this method, as shown in the next section for a sample set of PDEs from the P_3-approximation. A more detailed derivation may be found in [?].

Following the discussion in the previous section and letting $N = 3$, we will extract the P_3-approximation. Applying Eq. (8) for $n = 0$ and $n = 2$, and using $J_2 = 0$ for the P_3-approximation and $\nabla_x J_0 = 0$ since $Y_0 \equiv 1$, the equations contain a total of six independent spherical harmonics (Y_2^m and Y_0^m). By collecting coefficients of each spherical harmonic via the tools presented in the previous section, six PDEs can be obtained for a three-dimensional problem. Here we will limit our study to a two-dimensional enclosure without dependence in the z-direction (as shown in Fig. 1). Due to the symmetry of the intensity field about the x-y-plane, which requires $I(\theta, \phi) = I(\pi - \theta, \phi)$, the coefficients associated with spherical harmonics Y_2^{-1} and Y_2^{1} are then shown to be zero (as well as I_0^1, I_3^{-2}, I_3^0 and I_3^2, i.e., all with $n + m$ odd). Thus, the six PDEs from Eq. (8) reduce to four coupled elliptic PDEs as summarized below:

$$
\frac{\partial}{\partial \tau_x} \left[2\gamma_{8,3}\frac{\partial I_2^{-2}}{\partial \tau_x} - \gamma_{1,1}\frac{\partial I_0^1}{\partial \tau_y} + 2\gamma_{7,3}\frac{\partial I_2^0}{\partial \tau_y} + 5\frac{\partial I_0}{\partial \tau_x} \right] + \frac{\partial}{\partial \tau_y} \left[2\gamma_{8,3}\frac{\partial I_2^{-2}}{\partial \tau_y} - \gamma_{1,1}\frac{\partial I_0^1}{\partial \tau_x} + 2\gamma_{7,3}\frac{\partial I_2^0}{\partial \tau_x} + 5\frac{\partial I_0}{\partial \tau_y} \right] - 2\alpha_2 I_2^{-2} = 0, \quad \text{for } Y_2^{-2}, \quad (11a)
$$

$$
\frac{\partial}{\partial \tau_x} \left[6\gamma_{1,1}\frac{\partial I_0^0}{\partial \tau_x} + 6\gamma_{1,1}\frac{\partial I_2^0}{\partial \tau_x} + 5\frac{\partial I_0}{\partial \tau_x} \right] + \frac{\partial}{\partial \tau_y} \left[6\gamma_{1,1}\frac{\partial I_0^0}{\partial \tau_y} + 6\gamma_{1,1}\frac{\partial I_2^0}{\partial \tau_y} + 5\frac{\partial I_0}{\partial \tau_y} \right] - \alpha_2 I_2^0 = 0, \quad \text{for } Y_2^0, \quad (11b)
$$
\[
\frac{\partial}{\partial \tau_x} \left[2 \gamma_{8,3} \frac{\partial I_2}{\partial \tau_x} - \gamma_{1,1} \frac{\partial I_2}{\partial \tau_y} - 2 \gamma_{7,-3} \frac{\partial I_2}{\partial \tau_x} + \frac{5}{\alpha_1} \frac{\partial I_0}{\partial \tau_x} \right] \\
+ \frac{\partial}{\partial \tau_y} \left[2 \gamma_{8,3} \frac{\partial I_2}{\partial \tau_y} + \gamma_{1,1} \frac{\partial I_2}{\partial \tau_y} + 2 \gamma_{7,-3} \frac{\partial I_2}{\partial \tau_y} - \frac{5}{\alpha_1} \frac{\partial I_0}{\partial \tau_y} \right] - 2 \alpha_2 I_2^2 = 0, \quad \text{for} \ Y_2, \quad (11c)
\]

\[
\frac{\partial}{\partial \tau_x} \left[\frac{5}{\alpha_1} \frac{\partial I_0}{\partial \tau_x} - \frac{1}{\alpha_1} \frac{\partial I_2}{\partial \tau_x} + \frac{6}{\alpha_1} \frac{\partial I_2}{\partial \tau_y} + \frac{6}{\alpha_1} \frac{\partial I_0^2}{\partial \tau_x} \right] \\
+ \frac{\partial}{\partial \tau_y} \left[\frac{5}{\alpha_1} \frac{\partial I_0}{\partial \tau_y} - \frac{1}{\alpha_1} \frac{\partial I_2}{\partial \tau_y} - \frac{6}{\alpha_1} \frac{\partial I_2}{\partial \tau_y} + \frac{6}{\alpha_1} \frac{\partial I_0^2}{\partial \tau_y} \right] = 5 \alpha_0 (I_0 - 4 \pi I_b), \quad \text{for} \ Y_0, \quad (11d)
\]

where

\[
\gamma_{i,j} = \left(\frac{i}{\alpha_3} + \frac{j}{\alpha_1} \right).
\]

Since intensity is expressed as a truncated series of spherical harmonics, Eqs. (1) through (3), boundary conditions can only be satisfied approximately. This is done by minimizing the difference between \(I(\bar{\tau} = \bar{\tau}_w, \bar{s}) \) and \(I_w(\bar{\tau}_w, \bar{s}) \) over the hemisphere covering all outgoing directions \(\hat{n} \cdot \bar{s} > 0 \) everywhere on the surface, as described by vector \(\bar{\tau}_w \) and shown in Fig. 1. There are several minimization schemes, the most popular ones proposed by Mark [11, 12] and by Marshak [13]. For more general problems, Marshak’s boundary condition appears to be more flexible and accurate since it minimizes the difference in an integral sense. Here, Marshak’s boundary conditions are used, i.e.,

\[
\int_{\hat{n} \cdot \bar{s} > 0} I(\bar{\tau}_w, \bar{s}) \bar{Y}_{2i-1}^m d\Omega = \int_{\hat{n} \cdot \bar{s} > 0} I_w(\bar{s}) \bar{Y}_{2i-1}^m d\Omega, \quad i = 1, 2, ..., \frac{1}{2} (N + 1), \text{all relevant } m, \quad (12)
\]

where the \(\bar{Y} \) denote spherical harmonics measured from a local spherical coordinate system, with polar angle \(\tilde{\theta} \) measured from the surface normal (local \(\bar{z} \)-axis), and \(\tilde{\phi} \) in the plane of the surface (measured from a local \(\bar{x} \)-axis). “All relevant \(m \)” implies choosing a set consistent with the \(P_N \)-approximation. For example, for the \(P_3 \) approximation 6 boundary conditions are needed: \(i = 1 \) provides 3 (\(m = -1, 0, +1 \)), and another 3 must come from \(i = 2 \) (usually chosen as the smallest \(m \)-values, i.e., \(m = -1, 0, +1 \)).

In general, of course, the local surface normal does not coincide with the global \(z \)-axis. Thus, in order to obtain a generic boundary condition for arbitrary geometries the global spherical harmonics must be rotated into the local coordinate system for the evaluation of Eq. (12). This can be done by expressing intensity in terms of, both, local and global coordinates:

\[
I(\tau, s) = \frac{1}{4\pi} \sum_{n}^{N} \sum_{m=-n}^{n} I_n^m(\tau) Y_n^m(s) = \frac{1}{4\pi} \sum_{n}^{N} \sum_{m=-n}^{n} \bar{I}_n^m(\tau) \bar{Y}_n^m(s), \quad (13)
\]
Fig. 1 Local and Global Coordinates for a Two-Dimensional Enclosure

The local coefficient functions \(\bar{I}^m_n \) are functions of the global \(I^n_m \), and are related by the Wigner-Eckart theorem as [14]

\[
\bar{I}^m_n = \sum_{m'=-n}^{n} D^n_{mm'} I^{m'}_n,
\]

where the Wigner \(D^n_{mm'} \)-functions depend on the three rotation angles from the \(x\), \(y\) and \(z\)-axes.

For the rest of the discussion we will again limit ourselves to two-dimensional geometries in the global \(x-y\)-plane, and to the \(P_3\)-approximation. For such geometries in local coordinates (with the \(\bar{x}\)-axis in the \(x-y\)-plane) integrals over \(\bar{Y}^m_{2l-1} \) vanish for negative \(m \), thus reducing the 6 boundary conditions to the required 4:

For \(\bar{Y}^0_1 \) : \(\bar{I}_0 + \frac{2}{3} \bar{I}_1 + \frac{1}{4} \bar{I}_2 = 4\pi I_w \),

For \(\bar{Y}^1_1 \) : \(\frac{2}{3} \bar{I}_1 + \frac{3}{4} \bar{I}_2 = 0 \),

For \(\bar{Y}^0_3 \) : \(\bar{I}_0 - \bar{I}_2 - \frac{8}{7} \bar{I}_3 = 4\pi I_w \),

For \(\bar{Y}^1_3 \) : \(\frac{3}{2} \bar{I}_2 - \frac{351}{70} \bar{I}_3 = 0 \),

where the boundary intensity \(I_w \) has been assumed to be diffuse. Applying the Wigner \(D\)-
functions this may be expressed in terms of global I^n_m functions as:

For \bar{Y}^0_1:
$$I_0 + \frac{2}{3} \cos \delta I_1^{-1} - \frac{2}{3} \sin \delta I_1^{-1} - \frac{3}{4} \sin 2\delta I_2^{-2} - \frac{1}{8} I_2^0 - \frac{3}{4} \cos 2\delta I_2^2 = 4\pi I_w$$ \hspace{1cm} (16a)

For \bar{Y}^1_1:
$$\frac{2}{3} \sin \delta I_1^{-1} + \frac{2}{3} \cos \delta I_1^1 + \frac{3}{2} \cos 2\delta I_2^{-2} - \frac{3}{2} \sin 2\delta I_2^2 = 0$$ \hspace{1cm} (16b)

For \bar{Y}^0_3:
$$\frac{1}{4} I_0 + \frac{3}{4} \sin 2\delta I_2^{-2} + \frac{1}{8} I_2^0 + \frac{3}{4} \cos 2\delta I_2^2 - \frac{30}{7} \cos 3\delta I_3^{-3}$$
$$+ \frac{3}{7} \cos \delta I_3^{-1} - \frac{3}{7} \sin \delta I_3^1 - \frac{30}{7} \sin 3\delta I_3^3 = \pi I_w$$ \hspace{1cm} (16c)

For \bar{Y}^1_3:
$$\frac{3}{2} \cos 2\delta I_2^{-2} - \frac{3}{2} \sin 2\delta I_2^2 - \frac{90}{7} \sin 3\delta I_3^{-3} - \frac{3}{7} \sin \delta I_3^{-1}$$
$$- \frac{3}{7} \cos \delta I_3^1 - \frac{90}{7} \cos 3\delta I_3^3 = 0$$ \hspace{1cm} (16d)

In order to apply these 4 boundary conditions to the governing Eqs. (11a) through (11d), the I^n_m and $I^n_m^\prime$ must be eliminated with the supplementary condition, Eq. (6), by setting $n = 1, 3$, resulting in expressions with derivatives of I^n_2 and $I^n_2^\prime$ in the surface normal direction (local \bar{z}-axis) and surface tangential direction (local \bar{x}-axis), respectively.

It turns out that, when the surface normal coincides with either the x- or y-axis, boundary conditions \bar{Y}^0_1 and \bar{Y}^0_3 contain normal derivatives of I_0, I_2^0 and I_2^2, while \bar{Y}^1_1 and $Y^1_3^\prime$ contain normal derivatives of only I_2^{-2}. This makes the given set of boundary condition inconvenient for use with commercial PDE solvers, such as FlexPDE [15], which allow “natural boundary conditions” (surface normal PDE derivatives specified). This cannot be achieved by linear combination of the given boundary conditions. Therefore, the $\bar{Y}^1_3 (m = 1)$ condition is replaced by $\bar{Y}^2_3 (m = 2)$, which allows, via linear combination, the formulation of four “natural” boundary conditions, i.e.,

$$\frac{\partial I^n_m}{\partial n} = f \left(\frac{\partial I^{n'}_{m'}}{\partial t}, I^{n'}_{m'} \right) \hspace{1cm} n, n' = 0, 2; \hspace{0.5cm} m, m' = 0, \pm 2,$$ \hspace{1cm} (17)

which can be used with FlexPDE and other commercial programs.

3. Sample Calculations

Several one- and two-dimensional radiative heat transfer problems have been investigated, employing the P_N-approximation developed in this study. First, a check on the consistency of the P_3 governing equations as well as boundary conditions was done by considering a one-dimensional medium being aligned with any of the three primary global coordinates. An absorbing-emitting medium and isotropically scattering medium confined in a rectangular enclosure was studied next, and the results were compared with those obtained from DOM/FVM. Finally, an equilateral triangular enclosure filled with a variable property medium was solved to demonstrate the capability and flexibility of the developed P_N-approximation.
Since the one-dimensional plane-parallel slab has been studied extensively with both analytical and exact numerical solutions available in the literature, it can serve as a quick check for the consistency of the governing equation (8). When an isothermal, absorbing-emitting gray medium is considered, the surface normal can be made to coincide with any of the three global coordinates. If the normal is aligned with the global z-axis, the P_3-approximation reduces to two coupled ODEs in I_0 and I^2_0. However, if the normal points into either the x- or y-direction, three coupled ODEs are obtained instead, consisting of I_0, I^0_2 and I^2_2. It is found that, for all three different arrangements, the I^0_2 and I^2_2 can be eliminated, leaving the same fourth-order ODE in I_0 independent of the direction of the surface normal. The boundary conditions are also found to be invariant with the choice of coordinate rotation. The solution has been given by Modest [1] with a discussion about the effects of the medium’s optical thickness. Consideration of this simple one-dimensional problem demonstrates the validity of the P_3-approximation governing equation (8) and the consistency of the governing equations under rotation of global coordinates.

Sample calculations of two-dimensional heat transfer in a rectangular enclosure have been performed via both the P_3-approximation and the FVM with equivalent order of approximation. The two-dimensional enclosure is placed in the x-y-plane, so that Eqs. (11a) through (11d) are the governing equations. The boundary conditions are provided by Eqs. (16a) through (16c). The radiative transfer results for the P_3-approximation were obtained by using a commercial Finite-Element PDE solver, FlexPDE [15], while results for the FVM were obtained using a code developed by Chai [16].

The first test problem assumes a square enclosure with side lengths L filled with a gray absorbing-emitting medium at radiative equilibrium. The boundaries are assumed to be cold and black except the bottom one, which is at T_h. Figure 2 shows a comparison of results with the FVM for the dimensionless local incident radiation ($G^* = I_0/(\sigma T^4_h) = 4T^4/L^4$) distribution along the centerline (at $x = L/2$) for different values of optical thickness $\tau = (\kappa + \sigma_s)L$ (note that for a gray medium at radiative equilibrium there is no distinction between absorption-reemission and isotropic scattering [1]). The coupled equations of the P_3-approximation were solved simultaneously on a total of 525 nodes and 242 finite-element cells. Typical computation times on a Pentium 4 2.53GHz platform were < 1 second. The CPU time appeared to be insensitive to the optical thickness.

For comparison, the same problem was also solved using the FVM as shown in Fig. 2. The 4π solid angle in the FVM calculation was divided into 4×4 angles, to make it comparable in order to the total of the 10 spherical harmonics used for the P_3-approximation. For the FVM solution convergence times increased, however, as the optical thickness of the medium increased and CPU time on the same platform doubles to $\simeq 2$ seconds. In Fig. 2, the “exact” solution was obtained by setting the FVM to the maximum accuracy allowed (24×8 solid angles). From the comparison in Fig. 2 it can be seen that the P_3-approximation consistently outperforms the FVM$_{4\times4}$ method, especially for the optically thin and intermediate cases ($\tau = 0.2, 2$). For optically thick media, both P_3 and the FVM calculations are close to the exact solution, but the FVM requires about twice the CPU time.
In the next sample calculation a rectangular enclosure with four black walls is considered. Only a mid-section \((0.4L < x < 0.6L)\) of the bottom wall is hot \((T_h)\), and the rest of the bottom wall and all the other three walls are cold. A homogeneous and purely isotropically scattering medium \((\sigma_s L = 1; \kappa = 0)\) is confined in the enclosure. The objective is to evaluate the dimensionless heat flux across the right wall for the given medium, in order to compare with DOM results given by Li et al. [17]. Figure 3 includes results from the \(P_3\)-approximation, the LSN \(S_8\) scheme [18], the LSO \(S_8\) scheme [19] and exact Monte-Carlo calculations. For LSN \(S_8\) and LSO \(S_8\), the results were obtained by using the step scheme and a \(50 \times 50\) grid. As shown in Fig. 3, the \(P_3\)-approximation yields results comparable in accuracy to the \(S_8\) LSN scheme, which features improvement over the moment-matching DOM scheme such as LSO by reducing ray effects. For this advanced LSN scheme, the weights are determined directly on the basis of geometric and physical considerations, while for the LSO scheme, the weight calculation is done algebraically and, thus, suffers from considerable ray effects [17]. If the DOIM [20] scheme instead of the step scheme was used for the LSN \(S_8\) and LSO \(S_8\), the results [17] become worse due to the ray effect. From this comparison, it is quite apparent that the \(P_N\)-approximation is less vulnerable to the ray effect, which is inherent to the DOM.

To demonstrate that the developed \(P_N\)-approximation is readily applied to irregular geometries, another sample calculation has been done on an equilateral triangle enclosure with three black walls, where one hot side of the triangle is placed along the \(x\)-axis and the other two walls are cold. An absorbing-emitting medium with variable absorption coefficient \((\kappa L = 2.0 + y/L; L = \text{side length of triangle})\) is at radiative equilibrium inside the enclosure. In the absence of an exact solution in the literature for such a complicated case, \(P_1\) results were obtained for comparison with \(P_3\) results. For complex geometries, the \(P_1\)-approximation can be easily implemented, because its governing equation and boundary conditions are in conservative form. As can be seen from Fig. 4, \(P_1\) basically underestimates the dimensionless incident radiation by up to 8\% compared to the \(P_3\)-approximation near bottom wall locations. However, since the local absorption coefficient increases linearly in the \(y\) direction, at the optically thicker top section of the triangle \(P_3\) results show little difference from \(P_1\) results. The computational cost remained below 1 second for this case using FlexPDE [15] on 100 cells with 231 nodes, and CPU time remained unchanged whether a variable property medium is involved or not.
4. Conclusions

A new form of P_N-approximation formulation that can be extended to any order of accuracy has been developed in this study. The resulting governing equation is a set of coupled second-order elliptic PDEs, which can be solved by using commercial PDE solvers. Several two-dimensional radiative heat transfer problems have been studied employing the P_3-approximation based on the proposed method. Comparison was made with available FVM, DOM and exact solutions from Monte-Carlo calculations. The following two conclusions can be drawn based on the performance of the P_3-approximation:

1. Unlike previous developed P_3-approximations, the present method provides a tool to assemble second-order coupled PDEs for any given odd order N, so that any desired order of accuracy can be obtained. These PDEs are compatible with standard PDE solvers. Moreover, the set of the governing equation allows the consideration of variable property media with anisotropic scattering. The generic boundary condition also means that complex geometries can be dealt with without extra work on developing specific boundary conditions. The resulting governing equations have been shown to reduce consistently with the dimensions of the problem considered, and are rotationally invariant.

2. Comparison with similar order of accuracy DOM or FVM, P_N was found to be superior to DOM/FVM in terms of ray effects and efficiency, especially when scattering and optically thick media are considered. For DOM/FVM, the number of iterations required increased rapidly for more complicated cases while the P_N-approximation remains unaffected by the level of the difficulty. Although the P_N-approximation also suffers from false scattering due to the expansion of intensity into a (smoother) series of spherical harmonics, it outperforms equivalent FVM/DOM schemes.
REFERENCES