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Abstract

Approximate, quasi-onedimensional conduction models have been developed to predict the chang-

ing shape of holes, single grooves, or overlapping grooves carved by ablation into a thick solid that

is irradiated by a moving laser source. For CW or pulsed laser operation a simple integral method

is presented, which predicts shapes and removal rates with an accuracy of a few percent, while

requiring one order of magnitude less CPU time than a three-dimensional, numerical solution. For

pulsed operation a “full pulse” model is presented, computing the erosion from an entire pulse in

a single step, and reducing computer time by another order of magnitude.
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Nomenclature

a curvature parameter, eq. (15)
c specific heat
C1� C2� C3 constants in Arrhenius relation
dA infinitesimal cross sectional area
F irradiation flux vector
F0 radiation flux density at center of beam at focal plane
�hre “heat of removal”
î,ĵ,k̂ unit vector in x, y and z directions
k thermal conductivity
n̂ unit surface normal
Nk conduction-to-laser power parameter
Q dimensionless irradiation flux vector at surface, = F�F0

�s(�x� �y) local groove depth
s(x� y) dimensionless groove depth
Ste Stefan number (ablation energy-to-sensible heat parameter)
�t time
t dimensionless time
T temperature
u laser scanning speed
U laser speed-to-diffusion speed parameter
vn ablation velocity (of solid surface)
w�w0 1�e2 radius of laser beam (at focal plane)
W dimensionless radius of laser beam, = w�w0

�x� �y� �z Cartesian coordinates
x� y� z dimensionless Cartesian coordinates
Greek Letters
�H thermal diffusivity
� local effective absorptivity at laser wavelength
�� far-field beam divergence
� temperature penetration depth
� wavelength of laser radiation
	 density of the medium

� 
0 dimensionless temperature (at the surface)
Subscripts
re evaluated at evaporation (or decomposition) temperature
� evaluated at ambient conditions, or located far away

Introduction

Since their invention in 1960, lasers have found diverse applications in engineering and industry

because of their ability to produce high-power beams. Laser applications include welding, drilling,
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cutting, scribing, machining, heat treatment, medical surgery, and others. One of the principle

advantages of laser cutting is its ability to cut very hard materials easily. Ceramics are among the

most difficult materials to machine by conventional machining techniques, since they are very hard

and brittle. The cost of machining ceramics into complex shapes is often prohibitive if conventional

machining is used. Lasers may provide a cheaper alternative to conventional machining and have

found wide-spread use in industry.

Modeling of laser drilling, cutting and scribing has been addressed by a number of investigators.

Simple one-dimensional drilling models have been given by Dabby and Paek (1972) and Wagner

(1974). Other approximate laser drilling models have been developed by von Allmen (1976),

Petring et al. (1988), and others. Multiple reflections during laser drilling have been addressed by

Anthony (1980), Bailey and Modak (1989), Vorreiter et al. (1991) and Ramanathan and Modest

(1992b).

Simple cutting models have been developed by Bunting and Cornfield (1975), and by the group

around Schuöcker, e.g., Schuöcker and Müller (1987), and Modest and Ramanathan (1992a).

Laser scribing of ablating and/or decomposing materials has been investigated primarily by

Modest and coworkers. They developed a number of simple models for quasi-steady CW laser

scribing, e.g., Modest and Abakians (1986) and Ramanathan and Modest (1990), as well as

sophisticated 3-D models for CW as well as pulsed lasers, e.g., Roy and Modest (1993), Bang et

al. (1993), Modest (1995) and Modest et al. (1994).

Finally, simple modeling of 3-D machining with a dual beam has been presented by Chryssoloris

(1991).

While sophisticated 3-D models describing the grooving process, such as Modest (1995),

are able to accurately predict groove shapes, this accuracy is only as good as the knowledge of

relevant material properties (which is generally poor). In addition, these models tend to demand

vast amounts of computer time, due to their nonlinearity as well as their three-dimensionality.

Therefore, it would be highly desirable to have a simple, approximate model that can predict

transient and pulsed shaping processes, similar to the approximate model of Modest and Abakians

(1986) for quasi-steady CW laser grooving. In the following, two such approximate models are

developed. Comparison with “exact” three-dimensional calculations will show that these models

can reduce computer times by orders of magnitude, accompanied by only a minor loss in accuracy.
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Figure 1: Laser machining setup and coordinate system.

Theoretical Background

A sketch for the problem under consideration is given in Fig. 1. Simplifying assumptions for the

present model are identical to the assumptions for the fully three-dimensional model of Modest

(1995); for convenience and to clarify the applicability and limitations of the model, they are

repeated here:

1. The solid moves with constant velocity u.

2. The solid is isotropic.

3. Property variations of the solid with temperature are negligible. Numerical experiments

with two- and three-dimensional models have shown that, even for ceramics with thermal
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diffusivity variations close to a full order of magnitude, this assumption is adequate provided

properties are evaluated at the ablation temperature [Ramanathan and Modest (1990), Roy

and Modest (1993)].

4. The material is opaque, i.e., the laser beam does not penetrate appreciably into the medium.

This assumption is somewhat limiting since some ceramics and other nonmetals are relatively

transparent at shorter wavelengths (i.e., at YAG and excimer laser wavelengths). Even the

opaquest material becomes semitransparent during ultra-short pulses compared to thermal

penetration by conduction, which may only be a fraction of a �m. Fortunately, for such

cases conductive losses are negligible.

5. Change of phase from solid to vapor (or decomposition products) occurs in a single step

with a rate governed by a simple Arrhenius relation. This assumption is relatively good for

a number of ceramics and other nonmetals, in particular since the exact removal process

is not well understood for many materials to date. For example, graphite is expected to

ablate, silicon carbide to decompose into various gases, and silicon nitride to decompose

into nitrogen and liquid silicon [forminga very thin liquid layer; with droplets being expelled,

Ramanathan and Modest (1995)]. Alumina is known to melt, but the liquid layer may be

thin enough due to alumina’s low thermal diffusivity. On the other hand the present model

is unsuitable for metals, which are expected to form thick liquid layers, possibly with strong

convection.

6. The evaporated material does not interfere with the incoming laser beam and ionization of

the gas does not occur. Most laser machining devices are outfitted with strong gas assists,

which have the purpose of (i) protecting the lens, (ii) blowing debris out of the way, and

(iii) suppressing or aiding chemical reactions on the material’s surface. Thus, for nonmetals,

this assumption is generally good. For metals plasma formation is commonly observed and

beam interaction with free electrons is likely in spite of strong gas assist.

7. Heat losses by convection and radiation are negligible as compared to the intensity of the

incident beam. Such losses could easily be included in the analysis. However, Modest

and Abakians (1986) have shown these effects to be negligible for virtually all situations,

including a sonic assist jet blowing across the surface.

8. Multiple reflections of laser radiation within the groove are neglected. This limits the present

analysis to strongly absorbing media and/or shallow grooves. Multiple reflections effects
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have been studied by Bang and Modest (1991,1992) and Bang et al. (1993). Their reflection

models could be combined with the present analysis.

As a consequence of these assumptions it is clear that the present analysis is aimed at non-

melting ceramics and other nonmetals. For the present theory we will also assume, in addition to

the above, that conduction losses are relatively minor, i.e., if conduction losses are less than, say,

25% of total absorbed laser energy and if these losses can be predicted with, say, 20% acuracy, the

overall error would be below 0�25� 0�20 = 5%�

Following Modest (1995) the transient heat conduction equation for a thick solid irradiated by

a scanning Gaussian laser beam, and its auxiliary conditions, may be written in non-dimensional

form as




t
= r2
� (1)

Initial condition:

t = 0 : 
 (x� y� z� 0) = 0 (2)

s (x� y� 0) = s0(x� y)�

Boundary conditions:

x � ��� y� ��� z � +� : 
 = 0; (3)

z = s(x� y� t) : �Q�n̂ = �Nk[n̂�r
 � VnSte];

Ablation condition:

z = s(x� y� t) : Vn = C1e
C2[1�Tre�T (�)]� (4)

with

x = �x�w0; y = �y�w0; z = �z�w0; s = �s�w0; � = �H�t�w
2
0; 
 =

T � T�
Tre � T�

; (5)

U =
uw0

�H
; Vn =

vnw0

�H
; Nk =

k(Tre � T�)
F0w0

; Ste =
�hre

c(Tre � T�)
�

Here �x� �y� �z and �s are dimensional coordinates and groove depth, which are then nondimensional-

ized with the beam radius at the focal point,w0; �H = k�	c is the thermal diffusivity of the material,

Tre is the equilibrium ablation (or “removal” temperature), and �hre is the energy required to

7



remove material (“heat of removal”). The parameters U and Vn are nondimensional laser scanning

and (transient) surface recession velocities (by ablation), Nk approximates the ratio of conduction

losses, for a surface normal to irradiation, and the absorbed laser flux; and Ste is the Stefan number

that compares ablation energy with sensible heat.

The boundary condition at the top surface, z = s(x� y� t)� specifies that absorbed laser irradiation

is used up by conduction losses and by the latent heat required to ablate material. The ablation

velocity (normal to the surface) is governed by a simple reaction equation of the Arhennius type

[Modest (1995)].

The energy intensity distribution, F, for a focussed Gaussian laser beam having a waist w0 at

the focal plane z0 and a total average power of P = �
2F0w

2
0 is given by Kogelnik and Li (1956),

and for a laser moving with constant velocity u into the positive �x direction is:

Q =
F
F0

=
�(t)
W 2

exp

�
�2

(x� Ut)2 + y2

W 2

�
ŝ

ŝ � k̂
� (6)

where

W 2(z) =
w2(z)
w2

0

= 1 + �2
�

(z � z0)� (7)

defines the beam radius, w, away from focus and

�� =
�

�w0
(8)

is the far-field beam divergence angle for the diffraction-limited case of a Gaussian beam. If the

laser beam is visualized as consisting of a bundle of rays into the direction ŝ(x� y� z)� perpendicular

to the wave-front of propagation, then ŝ can be related to the radius of the wave-front [Luxon and

Parker (1985)], rc(z), as:

ŝ
ŝ � k̂

=
(x� Ut)î + yĵq
r2
c (z)� x2 � y2

+ k̂� (9)

rc(z) = (z � z0)

�
1 +

1
�2
�

(z � z0)2

�
� (10)

Results given in this paper are limited to the Gaussian laser described above to simplify their

presentation; arbitrary spatial intensity profiles are readily incorporated.
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Finally, �(t) defines the temporal intensity variation during a laser pulse period of duration

tp = tp�on + tp�off� and is normalized such that

1
tp

Z t+tp

t
�(t)dt = 1� (11)

Therefore, for a CW laser � � 1�

Solution Approach

Equation (1) with its auxiliary conditions (2) through (4) form a complete set of dimensionless

equations in transient form to predict the forming groove shape s(x� y� t) and temperature field


(x� y� z� t). In order to find a simple, approximate solution for the conduction loss, equation (1),

we will assume that conduction takes place only in the direction of the (local) surface normal, i.e.,

the loss is locally one-dimensional. Transforming coordinates to n� a nondimensional distance

from a surface location pointing into the medium along the local surface normal (see Figure 2), the

solid will move through the origin for n with the ablation velocity Vn into the negative n-direction.

Thus, equation (1) transforms to



t
(dA
)� Vn



n
(dA
) =



n

�
dA




n

�
� (12)

where dA(n) is a local conduction cross section (Fig. 2). Inclusion of the factor dA(n) allows to

estimate surface curvature effects, which enhance conduction losses (concave surface, as shown

in Fig. 2) or impede them (convex surface, e.g., near the rim of the groove). If

r(x� y� n) = r(x� y� 0) + nn̂ = xî + yĵ + sk̂ + nn̂ (13)

is the vector to a point along n, then the cross-sectional area may be calculated from

dA(n) =

�����r
x

�����
�����r
y

����� dx dy� (14)

Evaluating equation (14) up toO(n) (since the heat-affected zone is expected to be thin), one finds

dA(n) = dA(0)
h
1 + an +O(n2)

i
� (15)

a = �
1q

1 + s2
x + s2

y

�
sxx

1 + s2
x

+
syy

1 + s2
y

�
�
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Figure 2: Local coordinate system into direction of surface normal.

where the subscripts denote differentiation, i.e., sx = s�x� etc. Equation (12) is readily solved

approximately using an integral method with a chosen temperature profile


 � 
0e
�n��� (16)

where 
0 is local surface temperature and � is a measure of the local penetration depth. Using this

profile to satisfy equation (12) in an integral sense (i.e., integrating the equation over all n from

0 to �), and again using equation (16) in boundary condition (3), leads to three simultaneous,

nonlinear equations for the unknown values of 
0� Vn and �, which are all functions of surface

location and time:
d

dt

�

0�(1 + a�)

�
+ Vn
0 =


0

�
� (17)


0

�
=

Q � n̂
Nk

� VnSte, (18)

Vn = C1exp

�
C2


0 � 1

0 + C3

�
� C3 =

T�
Tre � T�

� (19)

The last equation is simply the ablation condition, equation (4), which relates surface temperature

to the ablation velocity, which in turn is related to the receding groove depth by

ds

dt
=

Vn

n̂ � k̂
(20)
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Equations (17) through (20) must be solved simultaneously to obtain an expression for the surface

topology, s(x� y� t)�

It is important to realize that equation (16) is a rather simplistic temperature profile and that

the solution to equations (17) through (20) is going to be satisfacotry only as long as the temporal

variation of Q � n̂ allows this profile to be acceptable. In particular, equation (16) cannot have an

inflection point and is, therefore, unable to predict the trends after laser power has been turned

off abruptly. Fortunately, extensive numerical experiments with the “exact” 3D-code show that

ablation ceases almost immediately after the laser is turned off, making a solution of equations

(17) through (20) unnecessary for those times.

Pulsed Lasers

Equations (17) through (20) are equally applicable to continuous-wave as well as pulsed lasers.

However, for pulsed lasers ablation takes place only during the laser-on periods, and conduction

losses are generally very small. Therefore, it should be possible to simplify the governing equations

even further, and still arrive at a reasonably-accurate prediction for the forming surface topography.

This may be achieved by breaking up each laser pulse into three separate, idealized stages: (1) a

heat-up period of duration t1� during which the underlying material is heated to ablation conditions,

but during which no ablation occurs (Vn = 0), (2) ablation of duration tp�on � t1, during which a

fully-established heat-affected zone is pushed into the material along with the ablation front [i.e.,

the rate of change of heat stored in the substrate–the first term in equation (17)–is negligible as

compared with ablation energy, Vn(
0+Ste)], and (3) a cool-down period (the laser-off time tp�off),

during which the solid cools back to ambient conditions. It is this internally stored preheat energy

at the end of the second period that constitutes the conductive loss. Thus, we have:

Heat-up Period:

d

dt

�

0�(1 + a�)

�
=

Q � n̂
Nk

� 0 � t � t1� (21)

or


0�(1 + a�)(t1) =
Z t1

0

Q � n̂
Nk

dt (22)

Ablation Period:

Vn
0 =

0

�
=

Q � n̂
Nk

� VnSte� t1 	 t 	 tp�on� (23)

or

Vn(t) =
1
�

=
Q � n̂(t)

Nk(
0 + Ste)
� (24)
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and the ablation temperature follows from equation (19). It is the nature of an Arrhenius rate

equation that ablation temperature remains almost constant (
0 � const = �
0 � 1), even through

the ablation rate may vary strongly with Q � n̂(t). Thus, equation (24) may be further simplified

replacing 
0(t) by an average value �
0, which may be determined by inverting equation (19) in

terms of an average ablation velocity,

�
0 =
1 + C3

1� 1
C2

ln
�
�Vn
C1

	 � C3� (25)

�Vn =
1

tp,on � t1

Z tp,on

t1

Vndt =
R tp,on
t1

Q � n̂dt
(tp,on � t1)(�
0 + Ste)

� (26)

The two solutions (heat-up and ablation) may be mated by specifying the heat-up period to have

ended when 
0 reaches the value �
0 and �(t1) is assumed to have reached the value given by

equation (24) at t = t1: t1 is determined from this condition. The solution proceeds as follows:

1) A t1 is guessed [an accurate first guess is obtained from equation (22) since it is known that

�
0 � 1].

2) An average ablation velocity is obtained from equation (26) (again, starting with �
0 � 1).

3) A new value for �
0 is obtained from equation (25).

4) Updated values for �(t1) and t1 are found from equations (24) and (22), respectively.

Converged values for �
0 and t1 are then found through iteration. The situation is particularly

simple for a basic on-off pulse [�(t) = tp�tp�on = const for t � tp�on� �(t) = 0 otherwise]. In that

case Q � n̂ = const during laser-on time, and ablation proceeds quasi-steady with Vn� �� 
0 all being

constant. Then, for an on-off pulse,

�Vn = Vn =
1
�

=
Q � n̂

Nk(
0 + Ste)
= const� (27)

t1 =
Nk

Q � n̂

0�(1 + a�)� (28)

For any temporal pulse shape, the updated local groove depth after the ith pulse, si� follows then

from equation (20) as

si(x� y) = si�1(x� y) +
�Vn(tp�on � t1)

(n̂ � k̂)
� (29)

where the values for �Vn and (n̂ � k̂) can be calculated based on the topology after the (i�1)th pulse,

or some average value may be used by iteration.
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Figure 3: Groove development along centerline (left) and groove cross-section (right) for
continuous-wave laser operation.

Illustrative Examples

To demonstrate the strengths and limitations of the present models, a number of example calcu-

lations are shown in Figs. 3 through 7. For simplicity, all non-dimensional parameters (except

laser-on time tp,on) were held constant at Nk = 0�0427� Ste = 2.16, U = 3�185� � = 0�9, and

tp = 0�14. This corresponds to a laser with an average power of 600 W and a radius ofw0 = 147�m

scanning over graphite at 6.5 cm/s, for which a comparison with experimental data was carried out

in a previous paper [Modest et al. (1994)]. Most laser machining operations on non-metals can

be expected to have relatively similar sets of parameters. In all cases the laser is first turned on at

xstart = �1�5, i.e., at a location 1�5w0 before the center of the laser reaches the edge of the solid,

and is turned off as soon as the laser center reaches xstop = 2�5.

Figure 3 shows the case of a continuous wave laser. The exact solution shows distinct

entry/start-up effects, apparently due to warming up of surrounding material [Modest (1995)],

which is neglected by the approximate models. At quasi-steady operation the maximum groove

depth is almost 2w0, at which time approximately 30% of absorbed laser energy is lost to conduction

(not including preheating of material, which eventually ablates). If conduction losses are neglected,

a maximum depth of 2.63w0 is obtained (with, of course, a 30% larger overall removal rate). The
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Figure 4: Groove development along centerline (left) and groove cross-section (right) for pulsed
laser operation (on-off pulse shape).

approximate model does rather well if the correction factor a in equation (15) is included, predicting

maximum depth to about 5% and removal rate with about 3% accuracy. For CW operation the

penetration depth can be appreciable, making curvature effects important, as seen from the a = 0

line in the figure.

To assess whether the present integral method provides acceptable accuracy, one may apply

the integral method with and without conductive losses [with and without the transient preheating

term in equation (17); in the latter case the 
0�� reflects preheating of material to be ablated]. A

comparison gives an estimate of the conductive losses.

Figure 4 shows the same situation for a pulsed laser with a simple on-off pulse and a 10% duty

cycle (tp�on = 0�1� tp, during which the laser power is ten times the average power). Conductive

losses during the quasi-steady part of each laser pulse are about 10%. The curves labeled ‘present

model’ use the full-pulse model, equation (29). While including curvature effects (a 
= 0) produces

slightly better results, this improvement probably does not justify the considerable additional

effort. Applying the full-pulse model is somewhat marginal in this case, producing groove bottom

undulations much stronger than indicated by the exact solution. This is apparently due to the fact

that the laser moves a distance ofU�tp�on or 0.045w0 during each laser-on time, which is neglected

by the full-pulse model.
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Figure 5: Groove development along centerline (left) and groove cross-section (right) for pulsed
laser operation (triangular pulse shape).

The simple full-pulse model of equations (22), (24), (25), and (26) is expected to be most

accurate for simple on-off pulses, for which quasi-steady ablation is reached during each pulse,

equations (27) and (28). To ensure the validity of the model for arbitrary temporal pulse shapes, a

triangular pulse was also considered, i.e.,

�(t) =


�������
������

4tpt
t2
p� on

� 0 � t � 0�5tp� on�

4tp
tp� on

�
1�

t

tp� on

�
� 0�5tp� on � t � tp� on�

0� tp� on � t � tp�

(30)

As Fig. 5 shows, the results are very similar. Due to the more gradual ramp-up in laser power

the conduction losses are slightly larger resulting in an about 1.5% lesser groove depth. Thus, the

results suggest that, for short enough pulses (10% duty cycle or less), the actual temporal variation

of pulse power �(t) is unimportant and the pulse may be replaced by a (computationally simpler)

on-off pulse.

If the laser has extremely short pulses, such as a Q-switched laser, then conduction losses

become negligible, regardless of pulse profile �(t)� as seen from Fig. 6 for simple on-off pulses.

The “exact” solution shows a slight oscillation at the entry, which is apparently due to numerical
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Figure 6: Groove development along centerline (left) and groove cross-section (right) for Q-
switched laser operation.

instability because of the fact that at the edge interior nodes cannot be orthogonal to the top

surface during transient recession. All curves virtually collapse, implying that curvature effects

and, indeed, all conduction losses may be neglected, and that the full-pulse model can be applied.

Finally, Fig. 7 shows a comparison between the two approximate models for different (on-off)

pulsing conditions. For small duty cycles, tp,on�tp 	 0�01� the results from equations (17) to

(20) (Integral Method) are indistinguishable from those obtained from equations (27) to (29) (Full

Pulse Method). Small, but acceptable, differences become apparent for duty cycles of around 10%

while the full pulse method should probably not be used for duty cycles �20% (or, rather, when

tp�on�U � 0�1). In addition, for large values of tp�on�U calculations with the curvature correction

factor become rather unstable for a � 0 (as seen from the jaggedness of some of the dashed lines

in Fig. 7).

Summary and Conclusions

Two simplified models have been introduced for the calculation of shapes produced by laser ma-

chining. The models are limited to opaque, strongly-absorbing materials that ablate or decompose

upon irradiation by a laser (such as most ceramics), and that do not generate significant amounts of
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Figure 7: Groove development along centerline (left) and groove cross-section (right) for varying
laser pulse lengths.

liquid in the cutting zone (as would be expected for most metals, which melt and have large thermal

diffusivities). It is further assumed that any laser generated plume/plasma is blown away by strong

gas-assist. The first of these models results in a time-dependent ordinary differential equation

and is based on an integral method to determine conductive losses. This model is applicable to

shaping with continuous-wave as well as pulsed lasers. The second model is valid only for pulsed

laser operation, calculating ablation due to an entire pulse in one step. Depending on the problem

at hand, spatial and temporal nodal sizes, CPU times (on a high-power workstation) are reduced

from an hour or more (exact numerical) to minutes (integral method) and less than a second (full

pulse method), respectively. The integral method may be applied whenever conduction losses are

relatively small (less than, say, 30%). In order for the full pulse method to be valid, the laser should

also not move an appreciable amount across the surface during each laser pulse (less than � 0�1�

laser radius).
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