Technical Notes

\textbf{\textit{k}}-Distribution Methods for Radiation Calculations in High-Pressure Combustion

Gopalendu Pala
CD-Adapco, Lebanon, New Hampshire 03766 and
Michael F. Modestb
University of California, Merced, Merced, California 95343

aDOI: 10.2514/1.T3957

\textbf{Nomenclature}

\begin{align*}
\text{a} & = \text{nongray stretching factor for fill-spectrum} \text{-}\textit{k} \text{-distribution method} \\
\text{i} & = \text{radiative intensity, W/m}^2\text{sr} \\
\text{I}_b & = \text{blackbody intensity/Planck function, W/m}^2\text{sr} \\
\text{k} & = \text{reordered absorption coefficients in} \text{-}\textit{k} \text{distribution, cm}^{-1} \\
\text{L} & = \text{length of one-dimensional medium, cm} \\
\text{M} & = \text{total number of groups of} \text{rth gas component} \\
\text{N} & = \text{total number of species/scales} \\
\text{P} & = \text{total pressure, bar} \\
\text{PL} & = \text{pressure path length, P} \times \text{L, bar} \times \text{cm} \\
\text{q} & = \text{heat flux, W/m}^2 \\
\text{s} & = \text{unit direction vector} \\
\text{T} & = \text{temperature, K} \\
\text{x} & = \text{gas species mole fraction} \\
\text{η} & = \text{wave number, cm}^{-1} \\
\text{κ} & = \text{absorption coefficient, cm}^{-1} \\
\text{λ} & = \text{overlap parameter, cm}^{-1} \\
\text{σ_s} & = \text{scattering coefficient, cm}^{-1} \\
\text{τ} & = \text{high-fidelity} \text{-}\textit{k} \text{-distribution methods} \\
\text{Φ} & = \text{scattering phase function} \\
\text{ϕ} & = \text{composition variable vector} \\
\text{Ω} & = \text{solid angle, sr}
\end{align*}

\textbf{Subscripts}

\begin{align*}
\text{b} & = \text{blackbody function} \\
\text{g} & = \text{cumulative} \text{-}\text{\textit{k}} \text{distribution} \\
\text{m} & = \text{\textit{m}th group of} \text{rth gas/scale} \\
\text{n} & = \text{\textit{n}th gas/scale}
\end{align*}

\section{Introduction}

\textbf{NGRAY} radiation calculations in participating media can be most accurately performed using the line-by-line (LBL) approach. The LBL approach requires in excess of one million spectral solutions of the radiative transfer equation (RTE) during radiation calculations in the combustion system [1–5], making such radiation calculations prohibitive. For accurate and computationally efficient solutions of the RTE, several models have been proposed, applying the concept of reordering the absorption coefficient across the entire spectrum. These include the spectral-line-based weighted-sum-of-gray-gases (SLW) model [6,7], the absorption distribution function (ADF) method [8,9], and the full-spectrum \textit{k}-distribution (FSK) method [10,11]. The SLW and ADF methods are approximate schemes, in which the absorption coefficient is reduced to a few discrete values (chosen by the user), and integration over the spectrum is achieved by adding contributions of the “gray gases” (effectively trapezoidal rule quadrature, which requires a large number of points for good accuracy). The FSK method, on the other hand, is an exact method for a correlated absorption coefficient using a continuous \textit{k} distribution over the entire spectrum. Spectral integration can be performed using high-accuracy Gaussian quadrature, which generally yields excellent accuracy for less than half the number of points required by the trapezoidal rule of integration. Several advancements for the \textit{k}-distribution method have been proposed to address the shortcomings of the basic FSK scheme in strongly inhomogeneous media based on the multiscale (MS) [2] and the multigroup (MG) approaches [12], which may be summarized as 1) the full-spectrum-based hybrid multiscale multigroup FSK (MSMGFSK) method [13] (accommodates temperature and concentration inhomogeneities but only for gas mixtures), 2) the narrowband-based MSFSK method [14] for nongray multiphase mixtures with/without gray wall emission (accommodates concentration inhomogeneity), and 3) the narrowband-based hybrid MSMGFSK method [15] for nongray multiphase mixtures with/without wall emission (accommodates both temperature and concentration inhomogeneities). Recently, a portable spectral module has been developed by Pal and Modest [16] incorporating the LBL method and all of the \textit{k}-distribution methods with corresponding \textit{k}-distribution databases to facilitate spectral radiation calculations.

Radiation calculations with high-accuracy spectral modeling of gas properties in elevated pressure systems are scarce in literature. Denison and Webb showed good agreement in the emissivity calculation of a gas mixture at higher than atmospheric pressure compared to experimental measurements using the absorption-line blackbody distribution function in the SLW method [17]. However, almost all high-fidelity \textit{k}-distribution-based spectral radiation models have been developed for atmospheric pressure combustion [18]. In current FSK models, \textit{k}-\textit{g} distributions for a mixture are constructed on the fly using a high-accuracy database of single-species \textit{k} distributions together with a narrowband (NB) mixing model [19]. The NB mixing model [19] assumes that, at the NB level, the absorption coefficients of gases are uncorrelated (due to their small overlap), and hence the transmissivities of gases are multiplicative. The same assumption is also invoked during overlap parameter calculations in multiscale fill-spectrum \textit{k}-distribution (MSFSK) and MSMGFSK models.

At elevated pressure, where radiation becomes more dominant, stronger line overlap among various gaseous species is likely. Under such circumstances, the multiplicative rule of gas transmissivities may incur inaccuracies; hence, the accuracy of the mixing model needs to be validated at higher pressure. The objective of this Note is to investigate the performance of \textit{k}-distribution methods in conjunction with the mixing model for high-pressure conditions. The accuracy of mixing models in various FSK methods was tested for one-dimensional (1-D) homogeneous and inhomogeneous media and a two-dimensional (2-D) axisymmetric medium involving combustion of methane. All \textit{k}-distribution methods studied in this Note assume correlated absorption coefficients; thus, the “correlated” term...
is not repeatedly used: for example, FSK represents full-spectrum correlated k-distribution method.

II. Radiation Models

The k-distribution method reorders the rapidly oscillating absorption coefficient across the spectrum into a well-behaved smooth monotonically increasing function vs a cumulative distribution function g, which acts as a nondimensional wave number. The tedious integration over wave number space can then be replaced by integration over g space using a small number of quadrature points. The RTE for an emitting–absorbing–scattering medium on a spectral basis can be written as [20]

$$\frac{dI_n}{ds} = \kappa_n(\phi)I_{\text{bg}} - (\kappa_n(\phi) + \sigma_n(\phi))I_n + \frac{\sigma_n(\phi)}{4\pi} \int_{4\pi} I_n(\hat{s})\Phi(\hat{s}, \hat{s}')d\Omega$$

(1)

where κ_n and σ_n are the absorption and scattering coefficients, respectively. The vector ϕ contains state variables that affect κ_n and σ_n, which include temperature T, total pressure P, and gas mole fractions x: $\phi = (T, P, x)$. A unit direction vector is \hat{s}, and Φ is the spectral scattering phase function. In the most advanced FSK method, i.e., the MSMGFSK method [15], the mixture’s spectral absorption coefficient κ_n is first separated into contributions from N species, and then the spectral locations of the nth gas absorption coefficient are sorted into M exclusive spectral groups: that is,

$$\kappa_n = \sum_{m=1}^{N} \sum_{m=1}^{M} I_{\text{am}}$$

for $n = 1, \ldots, N$; $m = 1, \ldots, M$ (2)

The radiative intensity I_n is also broken up accordingly. The RTE [Eq. (1)] is then transformed into

$$\frac{dI_{\text{am}}}{ds} = \kappa_{\text{am}}I_{\text{bg}} - (\kappa_{\text{am}} + \sigma_{\text{am}})I_{\text{am}} + \frac{\sigma_{\text{am}}}{4\pi} \int_{4\pi} I_{\text{am}}(\hat{s})\Phi(\hat{s}, \hat{s}')d\Omega$$

for $n = 1, \ldots, N$; $m = 1, \ldots, M$ (3)

Note that the intensity I_{am} is due to emission by the mth group of the nth scale (the nth group) but subject to absorption by all groups of the other scales and its own group. The FSK reordering is done by multiplying Eq. (3) by a Dirac-delta function, followed by integration over the entire spectrum [15] as

$$\frac{dI_{\text{am}}}{ds} = k_{\text{am}}a_{\text{am}}I_{\text{bg}} - (\lambda_{\text{am}} + \sigma_{\text{am}})I_{\text{am}} + \frac{\sigma_{\text{am}}}{4\pi} \int_{4\pi} I_{\text{am}}(\hat{s})\Phi(\hat{s}, \hat{s}')d\Omega$$

for $n = 1, \ldots, N$; $m = 1, \ldots, M$ (4)

where a_{am} is a nongray stretching factor, and λ_{am} is the overlap parameter for the nth group of the mth scale (details can be obtained from Pal and Modest [15]). From the MSMGFSK method, a single-group MSFSK method (with N scales) can also be obtained by letting $M_n = 1$, and the basic single-group–single-scale FSK method is retrieved by setting $M_n = N = 1$ (and $\lambda_n = k_n$). Details of the NB-based k-g-distribution mixing model can be obtained from Modest and Riazi [19].

III. Results

The mixing model and the FSK methods were tested for various 1-D and 2-D problems for pressures up to 30 bar. Figure 1 shows the absolute errors $(\tau_{p, \text{LBL-direct}} - \tau_{p, \text{LBL-mixing}})$ in NB transmissivity calculations using the current mixing rule for a medium of path length of 2 m at 1500 K containing important combustion gases such as CO$_2$ and H$_2$O (1% CO$_2$ and 2% H$_2$O). For k-distribution-based calculations, narrowband-based data were obtained from databases compiled by Wang and Modest [21], while LBL data were obtained from spectroscopic databases, such as CDSD-1000 for CO$_2$ [22], HITEMP (high temperature) for H$_2$O [23], and HITRAN (high-resolution transmission) for all other gases. [24] Since CO$_2$ and H$_2$O overlap primarily at the trailing edge of the 2.7 μm band, the errors in transmissivity calculations are highest at this spectral location (as shown); everywhere else, errors are negligibly small. NB transmissivities calculated using the mixing rule and single-species k-distribution databases $(\tau_{p, \text{DB-mixing}})$ are essentially identical to LBL-mixing values, i.e., $\tau_{p, \text{LBL-mixing}}$ (not shown). Although the mixing rule incurs some errors near 3400 cm$^{-1}$, due to its extremely localized nature, this has no significant effect on heat transfer calculations.

A 1-D homogeneous isothermal layer of gas mixture (1% CO$_2$ and 2% H$_2$O by mole) bounded by cold black walls at various pressures was considered, keeping the pressure path length constant at 200 bar · cm. For such a homogeneous medium, the k-distribution method is exact, and hence is expected to yield results within the accuracy of the integration scheme (typically 0.5%). Any error in addition to the quadrature error will be due to the mixing rule to construct the mixture k-g-distribution from individual k-g-distributions. The nondimensional heat fluxes exiting the medium were calculated using the line-by-line, FSK, and more advanced models, such as the multiscale FSK in conjunction with the analytical solution of RTE in 1-D medium (see details for [20]). Relative errors are determined by comparison with LBL method as

$$\text{error}(\%) = \frac{\tau_{p, \text{LBL-direct}} - \tau_{p, \text{FSK/MSFSK}}}{\tau_{p, \text{LBL-max}}} \times 100$$

(5)

The results are tabulated in Table 1. It is seen that errors in heat flux calculations using FSK and MSFSK methods are always negligibly small compared to the LBL calculations and limited to 1%. At atmospheric pressure, the MSFSK method consistently yields higher accuracy for homogeneous media compared to higher pressures. The explanation for such observation is that, as the pressure increases, the width of the absorption lines broadens, increasing the overlap among species. One of the basic assumptions of the MSFSK method is that overlap among species is small, which is less accurate at higher pressure. Thus, the MSFSK method incurs more inaccuracy (although very small in magnitude) in heat transfer for homogeneous media at higher pressure compared to its atmospheric counterpart.

Fig. 1 Comparison of NB transmissivities calculated directly and using mixing rule (solid line: direct, dashed line: mixing rule).
The accuracy of k-distribution methods was investigated for an inhomogeneous medium at high pressure. A 1-D medium containing a CO$_2$-H$_2$O gas mixture, confined between cold black walls, was considered. The mixture consisted of two different homogeneous layers (denoted as left/hot and right/cold layers) adjacent to each other with step changes in the temperatures and concentrations of the species. Two different total pressures of 1 and 30 bar were considered. The pressure path length of the left/hot layer was kept constant at 60 bar·cm, while the pressure path length was varied for the right/cold layer. Such problems with step changes in species concentration and/or temperature provide an acid test for these methods because of their extreme inhomogeneity gradients.

Figure 2 shows the results for the case where the left layer contained 10% CO$_2$, 20% H$_2$O at 1500 K, whereas the right layer contained 20% CO$_2$, 10% H$_2$O at 300 K. It is seen that the MSFSK method calculations are more accurate (approximately by a factor of 4) than the single-scale FSK method results for both pressures. The accuracy of both methods increases with increase in pressure, which can be due to the larger optical thickness and the increase in line broadening resulting in a smoother absorption coefficient profile.

The k-distribution methods were investigated for a more realistic but artificial methane–air flame (from Modest and Zhang [10]) at 30 bar pressure. Temperature and concentration distributions for CO$_2$, H$_2$O, and CH$_4$ were obtained from the previous work of Modest and Zhang [10]. The local radiative heat source term was calculated using the LBL, FSK, and MSFSK approaches, employing the P-1 method as the RTE solver, and relative errors were determined by comparison with the LBL method as

$$\text{error} = \frac{\nabla \cdot q_{\text{LBL}} - \nabla \cdot q_{\text{FSK/MSFSK}}}{\nabla \cdot q_{\text{LBL,max}}} \times 100 \quad (6)$$

The maximum error in the local radiative heat source term is 11% using the FSK method and 2% using the MSFSK method (see Fig. 3), while their atmospheric counterparts have local maximum errors of 30% using the FSK method and 7% using the MSFSK method (see Table 1).

Table 1: Nondimensional heat flux exiting homogeneous isothermal medium at various pressures

<table>
<thead>
<tr>
<th>T, K</th>
<th>$P \times L$, bar·cm</th>
<th>LBL</th>
<th>FSK</th>
<th>MSFSK</th>
<th>Error FSK, %</th>
<th>Error MSFSK, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>1 bar × 200 cm</td>
<td>0.2134</td>
<td>0.2142</td>
<td>0.2133</td>
<td>0.37</td>
<td>−0.05</td>
</tr>
<tr>
<td></td>
<td>10 bar × 20 cm</td>
<td>0.3325</td>
<td>0.3348</td>
<td>0.3354</td>
<td>0.69</td>
<td>0.87</td>
</tr>
<tr>
<td></td>
<td>20 bar × 10 cm</td>
<td>0.3631</td>
<td>0.3652</td>
<td>0.3662</td>
<td>0.58</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>30 bar × 6.667 cm</td>
<td>0.3916</td>
<td>0.3936</td>
<td>0.3945</td>
<td>0.51</td>
<td>0.76</td>
</tr>
<tr>
<td>1000</td>
<td>1 bar × 200 cm</td>
<td>0.1748</td>
<td>0.1748</td>
<td>0.1749</td>
<td>0.01</td>
<td>0.07</td>
</tr>
<tr>
<td></td>
<td>10 bar × 20 cm</td>
<td>0.2338</td>
<td>0.2351</td>
<td>0.2361</td>
<td>0.56</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td>20 bar × 10 cm</td>
<td>0.2474</td>
<td>0.2483</td>
<td>0.2499</td>
<td>0.36</td>
<td>1.01</td>
</tr>
<tr>
<td></td>
<td>30 bar × 6.667 cm</td>
<td>0.2551</td>
<td>0.2566</td>
<td>0.2577</td>
<td>0.20</td>
<td>1.00</td>
</tr>
<tr>
<td>1500</td>
<td>1 bar × 200 cm</td>
<td>0.1224</td>
<td>0.1227</td>
<td>0.1225</td>
<td>0.27</td>
<td>0.08</td>
</tr>
<tr>
<td></td>
<td>10 bar × 20 cm</td>
<td>0.1486</td>
<td>0.1485</td>
<td>0.1491</td>
<td>−0.07</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td>20 bar × 10 cm</td>
<td>0.1538</td>
<td>0.1537</td>
<td>0.1551</td>
<td>−0.70</td>
<td>0.85</td>
</tr>
<tr>
<td></td>
<td>30 bar × 6.667 cm</td>
<td>0.1602</td>
<td>0.1589</td>
<td>0.1618</td>
<td>−0.81</td>
<td>0.98</td>
</tr>
</tbody>
</table>

Fig. 2 Nondimensional heat flux leaving an inhomogeneous slab at various total pressures with step changes in concentration and temperature.

Fig. 3 Relative error for radiative heat source calculations using FSK and MSFSK methods compared to LBL method in an artificial 2-D combustion chamber at 30 bar pressure.
Pal and Modest (14]). The axial and radial distances in Fig. 3 refer to distances normalized by the total axial length and the diameter of the domain, respectively.

IV. Conclusions

The k-distribution methods were successfully applied to radiation calculations in participating media at high pressure. The accuracy of the underlying mixing model was tested for gas mixtures at various conditions of pressure, temperature, and mixture composition. The narrowband mixing model was found to yield excellent accuracy except at an extremely localized part of the spectrum, and this inaccuracy had no effect on the heat transfer calculations. All basic single-scale to more advanced k-distribution methods consistently yielded excellent accuracy when applied to one-dimensional and two-dimensional media.

References

