Document Actions

Portal - Radiative Heat Transfer 3rd ed

 

 

book cover 3rd ed

Radiative Heat Transfer

Third Edition

Michael F. Modest

University of California, Merced

 Academic Press

  New York    San Francisco    London

To the m&m's of my life, Monika, Mara, and Michelle

Errata Sheet for the 3rd edition

[Errata Sheet for the 2nd edition]


 

Contents

1  Fundamentals of Thermal Radiation

 

    1.1  Introduction

 

    1.2  The Nature of Thermal Radiation

 

    1.3  Basic Laws of Thermal Radiation

 

    1.4  Emissive Power

 

    1.5  Solid Angles

 

    1.6  Radiative Intensity

 

    1.7  Radiative Heat Flux

 

    1.8  Radiation Pressure

 

    1.9  Visible Radiation (Luminance)

 

    1.10  Radiative Intensity in Vacuum

 

    1.11  Introduction to Radiation Characteristics of Opaque Surfaces

 

    1.12  Introduction to Radiation Characteristics of Gases

 

    1.13  Introduction to Radiation Characteristics of Solids and Liquids

 

    1.14  Introduction to Radiation Characteristics of Particles

 

    1.15  The Radiative Transfer Equation

 

    1.16  Outline of Radiative Transport Theory

 

 

2  Radiative Property Predictions from Electromagnetic Wave Theory

 

    2.1  Introduction

 

    2.2  The Macroscopic Maxwell Equations

 

    2.3  Electromagnetic Wave Propagation in Unbounded Media

 

    2.4  Polarization

 

    2.5  Reflection and Transmission

 

    2.6  Theories for Optical Constants

 

 

3  Radiative Properties of Real Surfaces

 

    3.1  Introduction

 

    3.2  Definitions

 

    3.3  Predictions from Electromagnetic Wave Theory

 

    3.4  Radiative Properties of Metals

 

    3.5  Radiative Properties of Nonconductors

 

    3.6  Effects of Surface Roughness

 

    3.7  Effects of Surface Damage and Oxide Films

 

    3.8  Radiative Properties of Semitransparent Sheets

 

    3.9  Special Surfaces

 

    3.10  Experimental Methods

 

 

4  View Factors

 

    4.1  Introduction

 

    4.2  Definition of View Factors

 

    4.3  Methods for the Evaluation of View Factors

 

    4.4  Area Integration

 

    4.5  Contour Integration

 

    4.6  View Factor Algebra

 

    4.7  The Crossed-Strings Method

 

    4.8  The Inside Sphere Method

 

    4.9  The Unit Sphere Method

 

 

5  Radiative Exchange Between Gray, Diffuse Surfaces

 

    5.1  Introduction

 

    5.2  Radiative Exchange Between Black Surfaces

 

    5.3  Radiative Exchange Between Gray, Diffuse Surfaces

 

    5.4  Electrical Network Analogy

 

    5.5  Radiation Shields

 

    5.6  Solution Methods for the Governing Integral Equations

 

 

6  Radiative Exchange Between Partially Specular Gray Surfaces

 

    6.1  Introduction

 

    6.2  Specular View Factors

 

    6.3  Enclosures with Partially Specular Surfaces

 

    6.4  Electrical Network Analogy

 

    6.5  Radiation Shields

 

    6.6  Semitransparent Sheets (Windows)

 

    6.7  Solution of the Governing Integral Equation

 

    6.8  Concluding Remarks

 

 

7  Radiative Exchange Between Nonideal Surfaces

 

    7.1  Introduction

 

    7.2  Radiative Exchange Between Nongray Surfaces

 

    7.3  Directionally Nonideal Surfaces

 

    7.4  Analysis for Arbitrary Surface Characteristics

 

 

8  The Monte Carlo Method for Surface Exchange

 

    8.1  Introduction

 

    8.2  Numerical Quadrature by Monte Carlo

 

    8.3  Heat Transfer Relations for Radiative Exchange Between Surfaces

 

    8.4  Random Number Relations for Surface Exchange

 

    8.5  Surface Description

 

    8.6  Ray Tracing

 

    8.7  Efficiency Considerations

 

 

9  Surface Radiative Exchange in the Presence of Conduction and Convection

 

    9.1  Introduction

 

    9.2  Conduction and Surface Radiation-Fins

 

    9.3  Convection and Surface Radiation

 

 

10  The Radiative Transfer Equation in Participating Media (RTE)

 

    10.1  Introduction

 

    10.2  Attenuation by Absorption and Scattering

 

    10.3  Augmentation by Emission and Scattering

 

    10.4  The Radiative Transfer Equation

 

    10.5  Formal Solution to the Radiative Transfer Equation

 

    10.6  Boundary Conditions for the Radiative Transfer Equation

 

    10.7  Radiation Energy Density

 

    10.8  Radiative Heat Flux

 

    10.9  Divergence of the Radiative Heat Flux

 

    10.10  Integral Formulation of the Radiative Transfer Equation

 

    10.11  Overall Energy Conservation

 

    10.12  Solution Methods for the Radiative Transfer Equation

 

 

11  Radiative Properties of Molecular Gases

 

    11.1  Fundamental Principles

 

    11.2  Emission and Absorption Probabilities

 

    11.3  Atomic and Molecular Spectra

 

    11.4  Line Radiation

 

    11.5  Nonequilibrium Radiation

 

    11.6  High-Resolution Spectroscopic Databases

 

    11.7  Spectral Models for Radiative Transfer Calculations

 

    11.8  Narrow Band Models

 

    11.9  Narrow Band k-Distributions

 

    11.10  Wide Band Models

 

    11.11  Total Emissivity and Mean Absorption Coefficient

 

    11.12  Experimental Methods

 

 

12  Radiative Properties of Particulate Media

 

    12.1  Introduction

 

    12.2  Absorption and Scattering from a Single Sphere

 

    12.3  Radiative Properties of a Particle Cloud

 

    12.4  Radiative Properties of Small Spheres (Rayleigh Scattering)

 

    12.5  Rayleigh-Gans Scattering

 

    12.6  Anomalous Diffraction

 

    12.7  Radiative Properties of Large Spheres

 

    12.8  Absorption and Scattering by Long Cylinders

 

    12.9  Approximate Scattering Phase Functions

 

    12.10  Radiative Properties of Irregular Particles and Aggregates

 

    12.11  Radiative Properties of Combustion Particles

 

    12.12  Experimental Determination of Radiative Properties of Particles

 

 

13  Radiative Properties of Semitransparent Media

 

    13.1  Introduction

 

    13.2  Absorption by Semitransparent Solids

 

    13.3  Absorption by Semitransparent Liquids

 

    13.4  Radiative Properties of Porous Solids

 

    13.5  Experimental Methods

 

 

14  Exact Solutions for One-Dimensional Gray Media

 

    14.1  Introduction

 

    14.2  General Formulation for a Plane-Parallel Medium

 

    14.3  Plane Layer of a Nonscattering Medium

 

    14.4  Plane Layer of a Scattering Medium

 

    14.5  Radiative Transfer in Spherical Media

 

    14.6  Radiative Transfer in Cylindrical Media

 

    14.7  Numerical Solution of the Governing Integral Equations

 

 

15  Approximate Solution Methods for One-Dimensional Media

 

    15.1  The Optically Thin Approximation

 

    15.2  The Optically Thick Approximation (Diffusion Approximation)

 

    15.3  The Schuster-Schwarzschild Approximation

 

    15.4  The Milne-Eddington Approximation (Moment Method)

 

    15.5  The Exponential Kernel Approximation

 

 

16  The Method of Spherical Harmonics (PN-Approximation)

 

    16.1  Introduction

 

    16.2  General Formulation of the PN-Approximation

 

    16.3  The PN-Approximation for a One-Dimensional Slab

 

    16.4  Boundary Conditions for the PN-Method

 

    16.5  The P1-Approximation

 

    16.6  P3- and Higher-Order Approximations

 

    16.7  Simplified PN-Approximation

 

    16.8  The Modified Differential Approximation

 

    16.9  Comparison of Methods

 

 

17  The Method of Discrete Ordinates (SN-Approximation)

 

    17.1  Introduction

 

    17.2  General Relations

 

    17.3  The One-Dimensional Slab

 

    17.4  One-Dimensional Concentric Spheres and Cylinders

 

    17.5  Multidimensional Problems

 

    17.6  The Finite Volume Method

 

    17.7  The Modified Discrete Ordinates Method

 

    17.8  Even-Parity Formulation

 

    17.9  Other Related Methods

 

    17.10  Concluding Remarks

 

 

18  The Zonal Method

 

    18.1  Introduction

 

    18.2  Surface Exchange - No Participating Medium

 

    18.3  Radiative Exchange in Gray Absorbing/Emitting Media

 

    18.4  Radiative Exchange in Gray Media with Isotropic Scattering

 

    18.5  Radiative Exchange through a Nongray Medium

 

    18.6  Determination of Direct Exchange Areas

 

 

19  Collimated Irradiation and Transient Phenomena

 

    19.1  Introduction

 

    19.2  Reduction of the Problem

 

    19.3  The Modified P1-Approximation with Collimated Irradiation

 

    19.4  Short-Pulsed Collimated Irradiation with Transient Effects

 

 

20  Solution Methods for Nongray Extinction Coefficients

 

    20.1  Introduction

 

    20.2  The Mean Beam Length Method

 

    20.3  Semigray Approximations

 

    20.4  The Stepwise-Gray Model (Box Model)

 

    20.5  General Band Model Formulation

 

    20.6  The Weighted-Sum-of- Gray-Gases (WSGG) Model

 

    20.7  k-Distribution Models

 

    20.8  The Full Spectrum k-Distribution (FSK) Method for Homogeneous Media

 

    20.9  The Spectral-Line-Based Weighted Sum of Gray Gases (SLW)

 

    20.10  The FSK Method for Nonhomogeneous Media

 

    20.11  Evaluation of k-Distributions

 

    20.12  Higher Order k-Distribution Methods

 

 

21  The Monte Carlo Method for Participating Media

 

    21.1  Introduction

 

    21.2  Heat Transfer Relations for Participating Media

 

    21.3  Random Number Relations for Participating Media

 

    21.4  Treatment of Spectral Line Structure Effects

 

    21.5  Overall Energy Conservation

 

    21.6  Discrete Particle Fields

 

    21.7  Efficiency Considerations

 

    21.8  Backward Monte Carlo

 

    21.9  Direct Exchange Monte Carlo

 

    21.10  Example Problems

 

 

22  Radiation Combined with Conduction and Convection

 

    22.1  Introduction

 

    22.2  Combined Radiation and Conduction

 

    22.3  Melting and Solidification with Internal Radiation

 

    22.4  Combined Radiation and Convection in Boundary Layers

 

    22.5  Combined Radiation and Free Convection

 

    22.6  Combined Radiation and Convection in Internal Flow

 

    22.7  Combined Radiation and Combustion

 

    22.8  Interfacing Between Turbulent Flow Fields and Radiation

 

    22.9  Interaction of Radiation with Turbulence

 

    22.10  Radiation in Concentrating Solar Energy Systems

 

 

23  Inverse Radiative Heat Transfer

 

    23.1  Introduction

 

    23.2  Solution Methods

 

    23.3  Regularization

 

    23.4  Gradient-Based Optimization

 

    23.5  Metaheuristics

 

    23.6  Summary of Inverse Radiation Research

 

 

24  Nanoscale Radiative Transfer

 

    24.1  Introduction

 

    24.2  Coherence of Light

 

    24.3  Evanescent Waves

 

    24.4  Radiation Tunneling

 

    24.5  Surface Waves (Polaritons)

 

    24.6  Fluctuational Electrodynamics

 

    24.7  Heat Transfer Between Parallel Plates

 

    24.8  Experiments on Nanoscale Radiation

 

 

A  Constants and Conversion Factors

 

B  Tables for Radiative Properties of Opaque Surfaces

 

C  Blackbody Emissive Power Table

 

D  View Factor Catalogue

 

E  Exponential Integral Functions

 

F  Computer Codes