Verbal Information Verification for High-performance Speaker Authentication

QIN CHAO

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Philosophy in Electronic Engineering

©The Chinese University of Hong Kong
June 2005

The Chinese University of Hong Kong holds the copyright of this thesis. Any person(s) intending to use a part or whole of the materials in the thesis in a proposed publication must seek copyright release from the Dean of the Graduate School.
To my loving family
Acknowledgements

First of all, I am grateful to my supervisor, Prof. Tan Lee, for having guided me with an open but practical mind, for introducing me the interesting topic of speech processing, for inspiring me on writing research papers, and for his generous support to my Ph.D study. I thank Prof. P.C Ching and H.T Tsui for writing supportive reference letters for me, Prof. Helen Meng for her biometric project which gave me the opportunity to study in CUHK, Prof. X.G Xia for encouraging me in my application interview, Dr. Frank Soong for sharing me his brilliant insights into machine learning, and Prof. Y.T Chan for his marvellous course on advanced DSP.

Special thanks are given to Mr. K.F Chow for sharing with me his many great ideas on speech recognition and for his great RSBB framework, and Miss M.T Cheung for the happy time with her.

During two years, I have sought helps from friends and colleagues that have helped me in many ways. C. Yang, Y. Qian, N.H Zheng, Y.Y Tam, Patgi Kam, S.W Lee, Y.C Chan, L. Tsang, W. Zhang, L.Y Ngan, Y.J Li, Y. Zhu, S.L Oey, Dexter Chan, and H. Ouyang help me a lot academically.

And technical support from Mr. Arthur Luk is much appreciated.
Automatic speaker authentication is to authenticate the identity of a claimed speaker by verifying the identity-related information embedded in his/her spoken utterances. The information mainly refers to the voice characteristic and the verbal content. This leads to two closely related technologies. One is speaker verification (SV) and the other is verbal information verification (VIV).

Throughout this thesis, speaker authentication is studied for users who speak Cantonese. A SV system has been developed using state-of-the-art techniques with digit-based contexts. The universal background model (UBM) adaptation method are adopted and compared with the Cohort method. In VIV, many considerations in the process of constructing anti-models, e.g., the way of pooling subword units, the model structure and the model complexity, are discussed. A new technique is proposed to provide more reliable and effective anti-likelihood scores. Our method uses the Gaussian Mixture Model (GMM) instead of the conventional Hidden Markov Model (HMM) for anti-modeling at the subword level. Three methods for integrating SV and VIV systems are investigated. They are voting method, support vector machines (SVMs) and Gaussian-based classifier respectively.

Experiments on 20 Cantonese speakers show that for SV the best result with equal error rate (EER) of 1.5% can be attained using the UBM adaptation. For VIV the experimental results indicate that the proposed GMM-based anti-
models constructed using combined Cohort-and-World methods exhibit the best separation between the true utterance and the erroneous one. The best result is obtained with EER equals to 0.45%. Error-free performance is achieved by using the Gaussian-based classifier to integrate two systems.
摘 要

自動說話人認證是透過辨認嵌入於語音中的身份信息來確認說話人的身份。與身份相關的信息主要包括說話人的語音特徵和語音內容。籍此而產生說話人確認和語義信息確認兩種相關技術。

本論文主要研究廣東話自動說話人認證技術。我們利用最新的技術實現了一個基於數字文本的說話人確認系統。在該系統中，我們採用了通用背景模型適應技術並與傳統技術進行了比較。在開發語義信息確認技術過程中，我們詳加考察了訓練反模型的方法，例如字詞的聚類、模型的結構與複雜度問題，並提出一種新技術。我們在字詞級別用高斯混合模型取代了傳統的隱馬爾可夫模型。本文還嘗試了三種不同方法用於結合這兩種系統，它們分別是表決法、支持向量機和高斯分類器。

說話人確認系統實驗表明，背景模型適應技術性能最優。語義信息確認實驗指出我們提出的反模型建模方法性能優良，能夠有效將正確與錯誤語句分離。最後，基於高斯分類器，自動說話人認證系統可達零錯誤率。
Contents

1 Introduction ... 1
 1.1 Overview of Speaker Authentication ... 1
 1.2 Goals of this Research ... 6
 1.3 Thesis Outline .. 7

2 Speaker Verification .. 8
 2.1 Introduction .. 8
 2.2 Front-End Processing .. 9
 2.2.1 Acoustic Feature Extraction ... 10
 2.2.2 Endpoint Detection ... 12
 2.3 Speaker Modeling .. 12
 2.3.1 Likelihood Ratio Test for Speaker Verification ... 13
 2.3.2 Gaussian Mixture Models .. 15
 2.3.3 UBM Adaptation ... 16
 2.4 Experiments on Cantonese Speaker Verification ... 18
 2.4.1 Speech Databases ... 19
 2.4.2 Effect of Endpoint Detection ... 21
 2.4.3 Comparison of the UBM Adaptation and the Cohort Method 22
 2.4.4 Discussions .. 25
 2.5 Summary .. 26

3 Verbal Information Verification ... 28
 3.1 Introduction .. 28
List of Tables

2.1 Statistics of the Digit Corpus of CUCALL 20
2.2 Statistics of the Digit Corpus of CUSV 20

4.1 Cantonese Sub-syllable Clustering based on Confusion Matrix . 41
4.2 Cantonese Sub-syllable Clustering based on K-means Clustering 42
4.3 Comparisons of training time of different anti-models (Training were carried out on a PC with Pentium 4 processor) 43
4.4 Statistics of the Sentence Corpus of CUCALL 46

5.1 Results using voting method with shared thresholds 61
5.2 Results obtained with the combined system on individual thresholds 62
List of Figures

1.1 An example of verbal information verification process (after [1]). 3
1.2 Speaker authentication approaches (after [1]). 4
1.3 The system by combining VIV with speaker verification (after [1]). 5

2.1 Modular representation of the training phase of a speaker verification system (after [9]). 9
2.2 Modular representation of the testing phase of a speaker verification (after [9]). 9
2.3 Modular representation of a filterbank-based cepstral parameterizations [9]). 10
2.4 Likelihood-ratio-based speaker verification (after [9]). 14
2.5 Pictorial example of two steps in adaptation of a hypothesized speaker model (after [17]). 17
2.6 Illustration of the effect of endpoint detection in speaker verification 22
2.7 A typical waveform used in our experiment . 23
2.8 Comparison of verification performance based on the Cohort method with different number of mixture components . 24
2.9 Comparison of verification performance based on UBM adaptation with different number of mixture components . 25
3.1 Utterance verification approach to VIV.. 29
3.2 Histograms for the utterance-level scores for two classes. One class of data is from clients and the other class of data is from impostors. From top left to bottom right: (a) using averaged target likelihood scores without likelihood ratio test, (b) using CM$_1$ confidence measure, (c) using CM$_2$ confidence measure (d) using CM$_3$ confidence measure.

3.3 False acceptance rate as a function of robust interval for a 0% false rejection rate.

4.1 Illustration of manual alignment compared with state-of-the-art automatic alignment on the utterance “baat-saam-gau-jat-ng-baat-sei-jat-jat-jat”, each panel shows, from top to bottom: (a) the waveform, (b) the spectrogram, (c) time axis (d) the manual alignment, and (e) the automatic alignment.

4.2 Equal Error Rate vs. Model Complexity

4.3 Equal Error Rate vs. Weighting factor α in combined Cohort-and-World (C&W) anti-models.

4.4 Comparisons of system performance based on various context-independent anti-models.

5.1 Histogram for the SV likelihood scores for two classes. One class is from client data and the other one is from impostor data. No single threshold value will serve to unambiguously discriminate between the two classes.

5.2 Histogram for the VIV likelihood scores for two classes. One class is from client data and the other one is from impostor data. No single threshold value will serve to unambiguously discriminate between the two classes.

5.3 Scatter plot of VIV scores vs SV scores. The dark line could serve as a decision boundary of our classifier.

5.4 Structure of the integrated authentication system.
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5</td>
<td>Example of the criteria for taking the values of the thresholds when FA and FR curves cross</td>
<td>55</td>
</tr>
<tr>
<td>5.6</td>
<td>Example of the criteria for taking the values of the thresholds when FA and FR curves do not cross</td>
<td>56</td>
</tr>
<tr>
<td>5.7</td>
<td>Linear separating hyperplanes for the separable case. The support vectors are circled. (after Burges [45])</td>
<td>58</td>
</tr>
<tr>
<td>5.8</td>
<td>False acceptance and false rejection rates obtained using the voting method with shared thresholds. β varies between 0 and 1</td>
<td>61</td>
</tr>
<tr>
<td>5.9</td>
<td>False acceptance and false rejection rates using the voting method with individual thresholds. β varies between 0 and 1</td>
<td>62</td>
</tr>
<tr>
<td>5.10</td>
<td>The learned decision boundary of SVMs and scatter plot of the development data</td>
<td>63</td>
</tr>
<tr>
<td>5.11</td>
<td>The learned decision boundary and scatter plot of the evaluation data</td>
<td>64</td>
</tr>
<tr>
<td>5.12</td>
<td>The learned decision boundary of GMM-based classifier and scatter plot of the development data</td>
<td>65</td>
</tr>
<tr>
<td>5.13</td>
<td>The learned decision boundary of GMM-based classifier and scatter plot of the evaluation data</td>
<td>66</td>
</tr>
<tr>
<td>A.1</td>
<td>Main interface of VIV system</td>
<td>74</td>
</tr>
<tr>
<td>A.2</td>
<td>Sample question</td>
<td>74</td>
</tr>
<tr>
<td>A.3</td>
<td>The detailed interface</td>
<td>75</td>
</tr>
<tr>
<td>A.4</td>
<td>The task grammar used in keyword spotting</td>
<td>75</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

Authentication of personal identity is an essential requirement for controlling access to protected resources. Traditionally, personal identity is usually claimed by presenting a unique personal possession such as a key, a badge, a password or a signature. However, these can be lost, stolen, or counterfeited, thereby posing a threat to security. Furthermore, a simple identity claim might be insufficient if the potential loss is great. Penalty for false acceptance is necessary.

Recently, human authentication by biometrics receives great attention as it can provide convenience to users while maintaining a high degree of security. Biometric authentication can be regarded as a practical application of pattern classification, where the goal is to authenticate the identity of users by measuring their physical traits, like iris, face, lips, palm print, voice, fingerprint, etc. Apart from these physiological characteristics, the users’ behavior also provides cues to idiosyncrasy. These biometric features can be used to discriminate among individuals for two reasons. First, it is well known that every one is born individually. Second, these features normally remain invariant over a fairly long term.

1.1 Overview of Speaker Authentication

Among these biometrics, voice is the most convenient one in that it is easy to produce, capture and transmit for remote processing. The process of confirming
a speaker’s identity by his/her speech is referred to as speaker authentication (SA). How to extract discriminative identity-related information from the speech signal is a crucial problem in the research on speaker authentication [1].

If the decision is made on the physical characteristics of voices, the task is named speaker recognition. It has been studied for several decades. Since mid-90’s, NIST\(^1\) has united researchers around the world to work on various practical problems in speaker recognition. With the continuous research efforts and the advances in computing technology, significant progress has been made in the past decade, making it possible to transfer the research results from laboratory simulation to real-world applications. There are however still many problems that affect the reliability, security and user-friendliness of authentication system, such as acoustic mismatch, quality of training data, the inconvenience of user enrollment, and the creation of large databases to store the speaker models [1].

As an enhancement to the speaker authentication technology, a novel approach called verbal information verification (VIV) was proposed [2]. It requires the user to speak out his/her personal information such as name, birth date and residential address in order to verify the identity. Different kinds of questions can be asked to implement different security levels, which could be used for users with different levels of authorities when accessing a system. The operation of an example VIV system is illustrated as in Fig. 1.1. It is similar to a typical telephone-banking procedure: after an account number is provided, the operator verifies the user by asking some personal information, such as mother’s maiden name, birth date, mobile number, address, etc. The user can only gain access into to his/her account only if the questions are answered correctly. To automate the whole verification procedure, the questions can be prompted by either a text-to-speech system (TTS) or using pre-recorded messages.

VIV can be used independently or combined with speaker verification system to provide the convenience to users, meanwhile a higher level of security could be achieved.

\(^1\)National Institute of Standards and Technology (NIST) is the federal technology agency that works with industry to develop and apply technology, measurements, and standards.
In the following discussion, speaker authentication refers to the process of authenticating a user via his/her voice input using pre-stored information. The information can be in various formats, such as lexical transcriptions, acoustic models, text, subword sequence, etc [1]. As shown in Fig. 1.2, speaker authentication can be categorized into two groups: by the speaker’s voice characteristics as in conventional speaker recognition, or by the content of an utterance as in verbal information verification. Speaker recognition could be further divided into speaker identification (SID) and speaker verification (SV). SID is the process of associating an utterance with a member in a pool of known speakers. It can be referred to as many to one mapping. SV is the process of verifying the claimed identity of an unknown speaker by comparing the voice characteristics as encapsulated in spoken input against a pre-stored speaker-specific model. It is a binary decision problem.

A speaker recognition system needs an enrollment session to collect data for the training of speaker-specific models. The enrollment causes inconvenience to users as well as the system developers who have to supervise the process of data collection. The quality of training data is critical to the performance
Figure 1.2: Speaker authentication approaches (after [1])

of a SV system. However, it might be too demanding and unrealistic to expect the users pronounce all training utterances correctly. Furthermore, since the training and testing voices may come from different transmission channels or acoustical environments, SV systems suffer from the acoustic mismatch between the training and testing conditions. The mismatch significantly affects the system performance.

On the other hand, VIV only needs speaker-independent statistical models to associate acoustic events with phonetic identities. During enrollment, only the user’s personal profile in text format is needed. A user’s personal data profile is created when the user’s account is set up. VIV doesn’t require a lengthy enrollment process and suffers less from acoustic mismatch. Since no speaker-specific voice characteristics are used in the verification process, it is solely the user’s responsibility to protect his/her own information. Once these information are known by others intentionally, system security can not be guaranteed. Therefore, in practical application, we have to devise many ways to avoid impostors using the speaker’s personal information by monitoring a particular session. As in [1], a VIV system can ask for some information that are not constant from time to time, e.g., the amount or date of the last deposit; or a subset of the registered personal information, e.g., a VIV system can require a user to register N piece of personal information ($N > 1$), and each time only randomly ask n questions ($1 \leq n < N$). Furthermore, a VIV system can be migrated to a SV system after speaker-specific utterances for enrollment are collected. This approach is shown in Fig. 1.3, where VIV is involved in the
enrollment and one of the key utterances in VIV is the pass-phrase which will be used in SV later. During the first 4 – 5 accesses, the user is verified by a VIV system. The verified pass-phrase utterances are recorded and later used to train an speaker-dependent HMM for SV. At this point, the authentication process can be switched from VIV to SV.

Figure 1.3: The system by combining VIV with speaker verification (after [1])

Suppose that we are going to design a security log-in system for restricted access to some confidential files in a computer using the technique of speaker authentication. Only those registered users are allowed to browse or download the files. The approach described above provides a desirable solution because of several advantages of the combined system. First, the approach is convenient to users since it does not need a formal enrollment session and a user can start to use the system right after his/her account is opened. Second, the acoustic mismatch problem maybe mitigated since the training data are from different sessions. Third, the quality of the training data are ensured since the training phrases have been verified by VIV before they are used in speaker modeling. Finally, once the system switches to SV, it will be rather difficult for an impostor to access the account even if the true speaker’s phrase is known by an impostor. Also, we may not have to use the two system sequentially. That is, VIV can be also used in the operation instead of only being used in enrollment session. There are several types of impostors:

- Naive impostor whose voice is unlike the true speaker and without knowing the pass-phrases.
• Impostor who knows all pass-phrases but his voice is very different from the true speaker.

• Impostor whose voice is very close to the true speaker but without knowing any of pass-phrases.

• Impostor whose voice is very like the true speaker while knowing some of the pass-phrases.

In order to deal with the first type of impostors, either SV or VIV alone would be sufficient to reject them. For the second type of impostors, SV alone can reject them rightly. For the third type of impostors, VIV alone can reject them correctly. For the last type of impostors, if the impostor was asked for only some questions with fixed order, even combined use of SV and VIV might not be able to reject them. However, if questions to be asked were selected randomly from the question pool, this type of impostors could be rejected.

1.2 Goals of this Research

In speaker authentication, the normalization technique plays a vital role in determining the performance of an authentication system. The performance is known to be significantly affected by the variation of the signal characteristics from trial to trial.

In speaker verification, the modeling of background speakers has been found to affect the system performance significantly. Many research efforts have been made to testify this importance. Despite the lack of a theoretical interpretation on the requirements for optimal background models, a number of effective techniques have been proposed [3][4][5].

Anti-modeling plays a similar role in VIV to background speaker modeling in SV. It provides a normalization score in likelihood ratio test and makes the normalized likelihood score be more stable and less variable, thus leading to improved performance. Some researches were conducted on anti-modeling in VIV [6][7][8]. However, there has been little systematic work seriously focused
on the design of anti-models. This is the focus of this research. In particular, we study the VIV for users who speak Cantonese, which is the most commonly used dialect in Southern China and Hong Kong. Cantonese is an important and vigorous dialect. There have been limited research on Cantonese speech processing, especially in the field of speaker authentication.

In this study, we aim to extensively investigate on the techniques of anti-modeling in VIV system for the Cantonese dialect and study their effectiveness and contributions to verification performance. The SV system makes use of the physiological trait of the speaker’s vocal tract, while the VIV system inspects the speech content. These information are expected to be complementary to each other, thereby making it possible to build a speaker authentication system that simultaneously exploits both levels of information. In this thesis, we also study the methods of integrating SV and VIV with the goal of attaining more reliable and robust verification.

1.3 Thesis Outline

In Chapter 2, the fundamental principles and the state-of-the-art techniques of speaker verification are introduced. Front-end feature extraction methods are described in detail. Speaker modeling and adaptation algorithms are also discussed. The utterance verification approach to VIV is described in Chapter 3. Practical security considerations and solutions are addressed too. Chapter 4 describes the considerations on anti-model designs and proposes novel techniques of anti-modeling for Cantonese VIV. In Chapter 5, three methods including parametric and nonparametric models for combining SV and VIV are investigated. Finally, Chapter 6 gives conclusions and future perspectives.
Chapter 2

Speaker Verification

2.1 Introduction

The speech signal carries information at several levels. Primarily, the speech signal conveys words or the message being spoken. On a secondary level, the signal also conveys information about the identity of the speaker. While speech recognition is concerned with the underlying linguistic message in an utterance, speaker recognition is concerned with the identity of the person speaking the utterance.

Depending upon the application, speaker recognition is divided in two specific tasks: verification (SV) and identification (SID). In a verification, the goal is to determine from a voice sample if a person is whom he or she claims to be. In speaker identification, the goal is to determine which one from a group of known voices best matches the input voice sample. Furthermore, in either SV or SID the speech can be constrained to be a known phrase (text-dependent) or totally unconstrained (text-independent). Success in both tasks depends on effective extraction and modeling of the speaker-dependent characteristics of the speech signal that can distinguish one speaker from another. The focus of this thesis is text-independent speaker verification.

A speaker verification system operates in two distinct phases, a training phase and a testing phase. Each of them can been seen as a succession of independent subprocesses. Fig. 2.1 shows a modular representation of the training
phase of a SV system. In the first step, feature parameters are extracted from the speech signal to obtain a representation suitable for statistical modeling. The details are given in Section 2.2. The second step is to establish a statistical model from the feature parameters, as described in Section 2.3. This training scheme is also applied to the training of background models (see Section 2.3).

![Figure 2.1: Modular representation of the training phase of a speaker verification system (after [9]).](image1)

Fig. 2.2 illustrates the test phase of a SV system. The input to the system include a claimed identity and the speech samples pronounced by an unknown speaker. Speech feature parameters are extracted from the speech signal in exactly the same way as the training phase. Then, the speaker model corresponding to the claimed identity and a background model are retrieved from the set of statistical models developed during the training phase. The last module computes some likelihood scores, normalizes them, and makes an acceptance or a rejection decision.

![Figure 2.2: Modular representation of the testing phase of a speaker verification system (after [9]).](image2)

2.2 Front-End Processing

The front-end processing module transforms the speech signal to a set of feature vectors. The aim is to obtain a new representation that is more compact and
less redundant than the raw signal. Such representation is more suitable for statistical modeling and calculation of distance measures. Most of the feature extraction techniques used in speaker verification systems rely on the cepstral representation of speech. The popular features used in speech recognition include Mel Frequency Cepstral Coefficient (MFCC), Linear Predictive Cepstral Coefficient (LPCC), Perceptual Linear Predictive (PLP), etc. In our work, MFCC is used. A detailed description about MFCC is given below.

2.2.1 Acoustic Feature Extraction

Fig. 2.3 shows a modular representation of a filterbank based cepstral representation. The speech signal is first pre-emphasized, that is, a filter is applied to it. The filter’s frequency response emphasizes on the high frequency part of the spectrum, which are generally decreased by the speech production process. The pre-emphasized signal is obtained by applying the following filter:

\[
\tilde{s}(n) = s(n) - \alpha \cdot s(n-1)
\]

where \(\alpha\) is the pre-emphasis parameters (a most common value for \(\alpha\) is about 0.95). By doing this, the spectrum magnitude of the outgoing pre-emphasized speech will have a 20 dB boost in the upper frequencies and 32 dB increase at the Nyquist frequency.

The pre-emphasized speech signal is then segmented into frames, which are spaced 20-30 msec apart, with 10-15 msec overlaps for short-time spectral analysis. Each frame is multiplied by a fixed length window. The Hamming window are the most widely used since they taper the original signal on the sides and thus reduce the side effects.

Once the speech signal has been windowed, Discrete Fourier Transform (DFT) is used to transfer these time-domain samples into frequency-domain.
ones. Usually, Fast Fourier Transform (FFT) is used to compute the DFT, and thus a power spectrum is obtained.

This spectrum presents a lot of fluctuations, and we are usually not interested in all the details of the them. Only the envelope of the spectrum is of interest. Another reason for the smoothing of the spectrum is the reduction of the size of spectral vectors. To realize the smoothing and get the envelope of the spectrum, we multiply the spectrum by a filterbank. A filterbank is a series of bandpass filters that are multiplied one by one with spectrum in order to get an average value in individual frequency bands. The filterbank is defined by the shape of the filters and by their frequency location (left frequency, central frequency, and right frequency). Triangular filter are often used and they can be located differently over the frequency. Mel scale for frequency localization of the filters is usually applied in most front-end feature extractions. This scale is an auditory scale which is similar to the frequency scale of the human ear. The localization of the central frequencies of the filters is given by

$$f_{\text{Mel}} = 2595 \star \log_{10}(1 + \frac{f_{\text{Lin}}}{700})$$ (2.2)

Finally, we take the log of this spectral envelope and multiply each coefficient by 20 in order to obtain the envelope in dB. At this stage of the processing, spectral vectors can be obtained.

Discrete Cosine Transform (DCT), is usually applied to the spectral vectors in speech processing and yields cepstral coefficients [10][11]:

$$C_n = \sum_{k=1}^{K} S_k \cdot \cos\left[n(k - \frac{1}{2})\frac{\pi}{K}\right], \quad n = 1, 2, \ldots, L$$ (2.3)

where K is the number of log-spectral coefficients calculated previously, S_k are the log-spectral coefficients, and L is the number of cepstral coefficients that we want to calculate ($L \leq K$). This transformation decorrelates features, which leads to using diagonal covariance matricies instead of full covariance matricies. Finally, a cepstral vector is obtained for each analysis window.

In addition to the cepstral coefficients, the time derivative approximations are incorporated in feature vectors to represent the dynamic characteristic of
speech signal. To combine the dynamic properties of speech, the first and second order differences of these cepstral coefficients may be used. And these dynamic features have been shown to be beneficial to speaker recognition performance [12]. The first-order delta MFCC (ΔC_m) and second-order delta-delta MFCC ($\Delta \Delta C_m$) are computed as [13]:

$$\Delta C_m = \frac{\sum_{k=-l}^{l} k \cdot C_{m+k}}{\sum_{k=-l}^{l} |k|}, \quad \Delta \Delta C_m = \frac{\sum_{k=-l}^{l} k^2 \cdot C_{m+k}}{\sum_{k=-l}^{l} k^2}$$

(2.4)

There is an additional operation called cepstral mean subtraction (CMS) which is used to remove from the cepstrum contributions of slowly varying convolution noises. CMS has proved to be effective in SV systems over telephone networks.

2.2.2 Endpoint Detection

Endpoint detection is a process of clamping the interval that contains only the desired speech. It discards those useless information for the modeling of speaker characteristics, such as silence which carries little speaker-specific information. If such non-speech segments are incorporated in the modeling process, they tend to blur the differences among speakers and result in degradation of pattern classification performance.

In this work, we use the frame-energy based endpoint detection algorithm proposed by Dr. Frank Soong due to its simplicity and effectiveness. The algorithm is implemented by the following procedure:

1. Calculate the energy for each frame within an utterance.
2. Design a three-vector codebook for scalar quantization.
3. Update the three codewords recursively.
4. Label each frame by comparing its energy against the first codeword.

2.3 Speaker Modeling

A variety of techniques have been proposed for speaker modeling [14]. The major approaches to speaker verification include Vector Quantization (VQ) [15],
Hidden Markov Models (HMMs) [16] and Gaussian Mixture Models (GMMs) [17]. In VQ, each speaker is represented by a codebook of spectral templates representing the sound clusters of his/her speech. The VQ codebook was used as an efficient means to characterizes a speaker’s feature space and was employed as a minimum distance classifier in the speaker recognition system [15]. While this technique has demonstrated good performance on limited vocabulary tasks, it is inadequate to model large variabilities encountered in an unconstrained speech task. HMMs model not only the underlying speech sounds, but also the temporal sequencing of these sounds. As a result, HMMs can be used as speaker models in text-dependent speaker verification. For text-independent tasks, the sequencing of sounds in the training data does not necessarily reflect the properties of testing data. Therefore, it may cause problems when using HMMs in text-independent tasks. On the other hand, the single-state HMM – also known as the Gaussian mixture model (GMM) [17] provides a probabilistic model of the underlying sounds of a person’s voices. Unlike HMM, GMM does not impose any presumed sequential constraints among the sound classes. In the following section, GMM-based text-independent SV is described in detail.

2.3.1 Likelihood Ratio Test for Speaker Verification

Given an input utterance Y and a hypothesized speaker S, the task of speaker verification, is to determine if Y was spoken by S. It is often assumed that Y contains speech from only one speaker.

We can formulate this task as a hypothesis test between two hypotheses, H_0 and H_1. H_0 means that Y is from the hypothesized speaker S, and H_1 is the alternative hypothesis. The optimum test for these two hypotheses is a likelihood ratio test (LRT) given by [18]

\[
\frac{p(Y|H_0)}{p(Y|H_1)} = \begin{cases}
\geq \theta, & \text{accept } H_0 \\
< \theta, & \text{accept } H_1
\end{cases}
\]

(2.5)

where $p(Y|H_0)$ can be referred to as the likelihood of the hypothesis H_0 given the utterance Y. The likelihood function for H_1 is likewise $p(Y|H_1)$ [18]. θ is
Chapter 2. Speaker Verification

the decision threshold for accepting or rejecting H_0. The main goal of designing a speaker verification system is to determine the techniques of computing values for the likelihoods $p(Y|H_0)$ and $p(Y|H_1)$.

The basic components of a speaker verification system based on LRT are shown as in Fig. 2.4. The output of the front-end processing is typically a sequence of feature vectors representing the test utterance, denoted as $X = \{x_1, ..., x_T\}$, where x_t is a feature vector indexed at discrete time t ($t \in [1, T]$). These feature vectors are used to compute the likelihoods of H_0 and H_1. Mathematically, a model denoted by λ_C represents H_0 that characterizes the hypothesized speaker S in the feature space of x. If a Gaussian distribution was used to represent the distribution of feature vectors for H_0, λ_C would contain the mean vector and covariance matrix of the Gaussian distribution. The λ_C represents the alternative hypothesis, H_1. The likelihood ratio is then $p(X|\lambda_C)/p(X|\lambda_{\overline{C}})$. Usually, the logarithmic likelihood is used,

$$\Lambda(X) = \log p(X|\lambda_C) - \log p(X|\lambda_{\overline{C}}). \quad (2.6)$$

While the model for λ_C is well defined and can be trained using speech data from S, the model for $\lambda_{\overline{C}}$ is less well defined since it potentially must represent the entire space of possible alternatives to the hypothesized speaker [18]. Two main approaches have been adopted for the modeling of this hypothesis. This first approach is to use a set of selected speaker models and assume that they are alternatives. In various contexts, this set of speakers has been called likelihood ratio sets [19], Cohorts [19][20], or background speakers [19][18].

The second approach is to pool speech from various speakers and train a single model, which is often referred to as a universal background model (UBM) [5]. Given a collection of speech samples from a large number of speakers, the

![Figure 2.4: Likelihood-ratio-based speaker verification (after [9]).](image-url)
Chapter 2. Speaker Verification

UBM is trained to represent the alternative hypothesis. The main advantage of this approach is that a single speaker-independent model can be trained for one particular task and then used for all hypothesized speakers in that task. The use of UBM has become the dominant approach in speaker verification.

In the testing phase, the likelihood of an utterance given the hypothesized speaker’s model is directly computed as \[\log p(X|\lambda_C) = \frac{1}{T} \sum_{t=1}^{T} \log p(x_t|\lambda_C). \] (2.7)
The $1/T$ scale is used to normalize the likelihood by utterance duration. With the Cohort method, the likelihood of the utterance given it is not from the hypothesized speaker is computed as \[\log p(X|\lambda_{\overline{C}}) = \log \left\{ \frac{1}{B} \sum_{b=1}^{B} p(X|\lambda_b) \right\}. \] (2.8)
where, \(\{\lambda_1, \ldots, \lambda_B\}\) is the set of B background speaker models. And \(p(X|\lambda_b)\) is computed as in Eq. (2.7). With the UBM method, this alternative likelihood is computed as \[\log p(X|\lambda_{\overline{C}}) = \frac{1}{T} \sum_{t=1}^{T} \log p(x_t|\lambda_{UBM}). \] (2.9)
where, \(\lambda_{UBM}\) is the trained UBM.

2.3.2 Gaussian Mixture Models

For a D-dimensional feature vector x, the likelihood function is defined as a mixture of M density functions \[p(x|\lambda) = \sum_{i=1}^{M} w_i p_i(x). \] (2.10)
It is a linear combination of M D-variate Gaussian densities, each parameterized by a $D \times 1$ mean vector μ_i and a $D \times D$ covariance matrix Σ_i:
\[p_i(x) = \frac{1}{(2\pi)^{D/2} |\Sigma_i|^{1/2}} e^{-(1/2)(x-\mu_i)^T \Sigma_i^{-1}(x-\mu_i)} \] (2.11)
The mixture weight w_i satisfies the constraint $\sum_{i=1}^{M} w_i = 1$. Collectively, the parameters of the Gaussian mixture model are denoted as $\lambda = (w_i, \mu_i, \Sigma_i), i = 1, \ldots, M$.

15
Given a collection of training data, maximum-likelihood estimation of model parameters is carried out by expectation-maximization (EM) algorithm. The EM algorithm iteratively refines the GMM parameters to monotonically increase the likelihood of the estimated model for the given training data.

On each EM iteration, the following reestimation formulae are used [18],

Mixture Weights:
\[
\bar{p}_i = \frac{1}{T} \sum_{t=1}^{T} p(i|x_t, \lambda) \tag{2.12}
\]

Means:
\[
\mu_i = \frac{\sum_{t=1}^{T} p(i|x_t, \lambda) \cdot x_t}{\sum_{t=1}^{T} p(i|x_t, \lambda)} \tag{2.13}
\]

Variances:
\[
\sigma_i^2 = \frac{\sum_{t=1}^{T} p(i|x_t, \lambda) \cdot x_t^2}{\sum_{t=1}^{T} p(i|x_t, \lambda)} - \mu_i^2 \tag{2.14}
\]

2.3.3 UBM Adaptation

For each speaker, a single GMM can be trained using the EM algorithm on the speaker’s enrollment data. The complexity of this GMM will be highly dependent on the amount of enrollment speech, typically 64 to 256 mixtures. Alternatively, the speaker model can be derived by adapting the parameters of a UBM using the speaker’s training data with maximum a posterior (MAP) estimation. The adaptation is a two-step process [18]. The first step is to estimate the sufficient statistics of the speaker’s training data for each mixture in UBM, e.g., mean vectors and covariance matrices. In the second step, parameter adaptation is performed by combining these “new” sufficient statistics with “old” sufficient statistics from the UBM mixture parameters using a data-dependent mixing coefficient. The mixing coefficient is designed so that mixtures with higher counts of data from the speaker rely more on the new statistics for final estimation, and mixtures with lower counts of data from the speaker rely more on the old statistics.

Given a UBM and training data from the target speaker, we first determine the probabilistic alignment of the training vectors over the UBM mixture
Chapter 2. Speaker Verification

Figure 2.5: Pictorial example of two steps in adaptation of a hypothesized
speaker model (after [17])

components (Fig. 2.5a). That is, for mixture i in the UBM, we compute [18]

$$
Pr(i|x_t) = \frac{w_i \cdot p_i(x_t)}{\sum_{j=1}^{M} w_j \cdot p_j(x_t)}
$$

(2.15)

$Pr(i|x_t)$ and x_t are used to compute the sufficient statistics for the weight,
mean, and variance parameters:

$$
n_i = \sum_{t=1}^{T} Pr(i|x_t),
$$

(2.16)

$$
E_i(x) = \frac{1}{n_i} \sum_{t=1}^{T} Pr(i|x_t) \cdot x_t,
$$

(2.17)

$$
E_i(x^2) = \frac{1}{n_i} \sum_{t=1}^{T} Pr(i|x_t) \cdot x_t^2.
$$

(2.18)

Lastly, these new statistics from training data are used to adapt the old UMB
sufficient statistics for mixture i (Fig. 2.5b) with the equations [18]:

$$
\hat{\omega}_i = [\alpha_i^\omega n_i/T + (1 - \alpha_i^\omega)\omega_i] \gamma
$$

(2.19)

$$
\hat{\mu}_i = \alpha_i^m E_i(x) + (1 - \alpha_i^m)\mu_i
$$

(2.20)

$$
\hat{\sigma}_i^2 = \alpha_i^\nu E_i(x^2) + (1 - \alpha_i^\nu)(\sigma_i^2 + \mu_i^2) - \hat{\mu}_i^2.
$$

(2.21)

The adaptation coefficients controlling the balance between old and new
estimates are $\alpha_i^\omega, \alpha_i^m, \alpha_i^\nu$ for the weights, means and variances, respectively. The
scale factor γ is computed over all adapted mixture weights to ensure they sum

3x^2 is the short form for $\text{diag}(x \cdot x^T)$
to unity. The adaptation coefficient controlling the balance between old and new estimates is $\alpha_i^\rho, \rho \in \{\omega, m, \nu\}$ and is defined as follows [17]:

$$\alpha_i^\rho = \frac{n_i}{n_i + \rho}$$ \hspace{1cm} (2.22)

where ρ is a fixed "relevance" factor for the parameter ρ.

Since the adaptation is data dependent, not all Gaussians in the UBM are adapted. Loosely speaking, if the UBM is considered to cover the space of speaker-independent, broad acoustic classes of speech sounds, then adaptation can be viewed as the speaker-dependent tuning of those acoustic classes observed in the speaker’s training speech. Mixture parameters for those acoustic classes not observed in training speech are merely copied from the UBM.

Experimental results showed that the effects of adapting different sets of parameters when creating speaker model are different [17]. Best verification performance is achieved through the adaptation of the mean vectors only. A partial explanation is that the mean vector is the most discriminative parameter representing the speaker’s voice characteristic. In contrast, the weight coefficient reflects approximately the portion of a particular phonetic class in the whole phonetic classes. And the variance may represent the variability of pronunciations. Although they also carry some speaker-specific information, reliable estimations of both ones count on large amount of adaptation data, which is practically infeasible. Therefore, in our implementation, only the mean vectors are adapted and variances and weights remain the same as in UBM.

2.4 Experiments on Cantonese Speaker Verification

We conduct two sets of experiments to justify the use of the UBM adaptation method. The importance of endpoint detection is also shown. Furthermore, we compare the Cohort method with the UBM adaptation.

ROC curves are traditionally used to show the tradeoff between miss and false alarm probability. The detection probability is plotted as a function of
false alarm probability. The Detection Error Tradeoff (DET) plot introduced by NIST ([21]) is used to evaluate the performance of different approaches. The DET plot improves the visual presentation by plotting miss and false alarm probabilities according to their corresponding Gaussian deviate and the plots are visually more intuitive [22]. Suppose that when we go to plot the miss versus false alarm probabilities, rather than plotting the probabilities themselves, we plot instead the normal deviates that correspond to the probabilities. In particular, if the distributions of error probabilities are Gaussian, then the resulting trade-off curves are straight lines. The distance between curves depicts performance difference more meaningfully. Generally, the better the system, the closer to the origin the DET curve.

All experimental results presented in this section are based on the front-end feature extraction process which has been described in Section 2.2.

2.4.1 Speech Databases

In order to emulate the real-world application scenarios, telephone speech is used in our experiments. The average SNR for all speech data is about 25dB. It is well known that quality of transmission channel will affect the system performance. In order to focus our study, the telephone data for training and testing are both selected from fixed line telephone networks.

The speech data are divided into two sets: the training set and the testing set. The testing set can be further divided into the development set and the evaluation set. The training set is used to build statistical models such as the UBM and the adapted speaker models. The development set is used to produce the client and the impostor’s access scores for determination of an optimal threshold that leads to an equal error rate (EER)\(^1\). The threshold will be applied to the evaluation test. The evaluation set is used to simulate real authentication trials.

\(^1\)Equal error rate is calculated by sorting true and false speaker test scores and finding the score value such that the fraction of true scores less than that value is equal to the fraction of false scores greater than that value.
In this study, the speech database used to train the UBM is part of CUCALLTM[23], which is a collection of telephone speech corpora for development of Cantonese speech technology. At this moment, only speech data from male speakers have been verified and ready for the experimental study. Specifically, the corpus consisting of continuous Cantonese digit strings of variable lengths is used. Table 2.1 summarizes the statistics on the corpus.

Totally, 8591 utterances from 50 male speakers are used for UBM training. For UBM adaptation, we use the data from CUSV, a database designed and developed by us specifically for speaker authentication. Table 2.2 summarizes the statistics on this corpus. For each client, 5 utterances are used for the adaptation of UBM. The total duration of adaptation data for each client is roughly 40 seconds.

<table>
<thead>
<tr>
<th></th>
<th>Training Set</th>
<th>Testing Set</th>
</tr>
</thead>
<tbody>
<tr>
<td># of Speakers</td>
<td>650</td>
<td>106</td>
</tr>
<tr>
<td># of Utterances</td>
<td>19.5K</td>
<td>3.0K</td>
</tr>
<tr>
<td># of Digits</td>
<td>146.2K</td>
<td>26.0K</td>
</tr>
<tr>
<td>Total Length</td>
<td>16.3 (hours)</td>
<td>2.9 (hours)</td>
</tr>
</tbody>
</table>

Table 2.1: Statistics of the Digit Corpus of CUCALL

The testing database is the remaining part of CUSV. Our experiments are carried out on 20 male speakers. For each speaker, two sessions of recording over a time span of 6 months are used as the development set and another four
sessions are used for evaluation. Each session for simulating clients consists of 5 utterances and each session for simulating impostors has 4 utterances. Each utterance consists of 14 digits. It has to be emphasized that our verification task is text and vocabulary independent although digit-based speech content is used here. The speakers were instructed to read the digit strings over the telephone network in a normal office environment.

In development set, one of the two sessions are used to simulate the clients and the other one to simulate the impostors. For each speaker, the utterances of the first session of his/her own recordings are used as the client data while the second session of the other 19 speakers are used as impostor data. This makes up a total of 100 tests of clients and 1520 tests of impostors.

Among the evaluation data, three of the four sessions are used to simulate the clients and the other one to simulate the impostors. That is, for each speaker, the utterances of the first three sessions of his/her own recordings are used as the client data while the fourth sessions of the other 19 speakers are used as impostor data. This makes up a total of 300 tests of clients and 1520 tests of impostors.

2.4.2 Effect of Endpoint Detection

One factor that affects the performance of speaker verification system is whether to keep the silence or noise-like portions within utterances in both training and testing. Two experiments are conducted, one with endpoint detection and the other without. The UBM adaptation approach are used in both experiments. The number of mixture components is fixed to 1024. There are two sets of UBMs and adapted speaker models.

Fig. 2.6 shows the DET plots of speaker verification with and without endpoint detection. Clearly, the speaker verifier with endpoint detection outperforms the one without significantly. The equal error rate of 1.5% also testifies the effectiveness of the algorithm in use. It must be pointed out that when we construct the database, speakers are addressed to pronounce digit strings with clear short pauses (See the example waveform as in Fig. 2.7).
these silence periods are pooled together with those nonsilent portions to train a speaker-specific model, they will definitely blur the difference of voice characteristics among various speakers. In addition, since incorporation of endpoint detection will remove those silent frames, computation of speaker verification will be greatly reduced. That is important for practical application.

2.4.3 Comparison of the UBM Adaptation and the Cohort Method

Experiments are performed to compare the traditional Cohort methods with the UBM adaptation. Specifically, the SV system with Cohort method is built by training a GMM for each speaker with one recording session (approximately 40 seconds in length). The same session of recording is used in the UBM adaptation method to adapt the UBM to a speaker-specific model.

For both methods, determining an appropriate number of mixture components to model a speaker adequately is an important but difficult problem. There is no theoretical way to find out the best number of mixture components.
For speaker modeling, a reasonable criterion is to choose the minimum number of components to adequately model a speaker for good generalization performance. Choosing too few mixture components would give an underestimated speaker model, which does not accurately model the speaker’s characteristics. Too many components can result in poor estimation of model parameters and excessive computational complexity.

For the Cohort method, the number of mixture components in training phase varies from 16 to 128. For each test, the likelihood score of a target speaker is normalized by the mean of 10 closest speakers’ likelihood scores. The results attached with the Cohort method are given as in the Fig. 2.8.

For the UBM adaptation method, the number of mixture components in training phase usually varies from 512 to 2048 depending on the data. From our experiments, it was found that most of the mixture components were affected by the adaptation. The degree of changes to a mean vector depends on how close the mean vector is to the new statistics. The results with the UBM adaptation are given as in the Fig. 2.9.

In Fig. 2.8, the speaker model with 32 mixture components performs the best among all models. It is reasonable since the limited training data only allows reliable estimation of limited model parameters. Too many mixture models
Figure 2.8: Comparison of verification performance based on the Cohort method with different number of mixture components

might well fit the training data but provide a poor generalization performance.

The DET Curves in Fig. 2.9 show the evidence of performance improvement from the Cohort method to the UBM adaptation method. In terms of verification performance, UBM with 1024 mixture components outperforms the other two sightly. With the consideration of computational cost, this is our optimal choice and will be employed in the subsequent experiments.

From these results, we come to a conclusion that UBM adaptation method outperforms the Cohort method, in particular when the data for training a speaker-specific model are limited. In addition to the superior verification performance, UBM adaptation method reduces the efforts on reconfiguring the system, when a new client is introduced to the system.

Why does adapted UBM outperform cohort?

In the Cohort method, when certain frames in an testing utterance from a true speaker are “unseen” in the training feature space, or changed by environmental or physical factors, the target likelihood might be very low, even lower than the
Figure 2.9: Comparison of verification performance based on UBM adaptation with different number of mixture components

Theoretically, if sufficient training data with a wide phonetic coverage are available from a single speaker, Cohort method should suffer less from this problem. However, it is practically infeasible and inconvenient to have those amount of training data available.

In contrast, the use of adapted models in the likelihood ratio is not affected by these “unseen” acoustic events in recognition speech. During recognition, data from acoustic classes unseen in the speaker’s training speech produce approximately zero log likelihood ratio scores, which contribute neither towards nor against the hypothesized speaker.

2.4.4 Discussions

Text-independent speaker verification has made tremendous strides forward since the initial work 30 years ago. One of the largest impediment to the
widespread deployment of SV technology and to fundamental research challenges is the lack of robustness to channel variability and mismatched conditions.

Even using the superior UBM adaptation method, verification errors still frequently occur. Factors affecting the performance include:

- The amount of target training data
- The length of test speech
- Channel distortion and noise
- Intra-speaker variability
- Sex differences

Among them, sex differences are not supposed to be the cause of errors. In fact, only male speakers are involved in our experiments. Adaptation data for each speaker has an average duration of only 40 seconds. Moreover, nonspeech segments have been eliminated for the training. This makes the effective speech duration even shorter. The same situation is encountered in testing phase. It is widely accepted that longer test segment provides better performance. As experimental databases consist of speech waves collected over telephone network in a normal office environment, it will inevitably suffer from channel distortion and ambient noises. Last but not least, temporal factors also play an important role in speaker verification performance in that the evaluation data have been designed to stretch out over months or even years.

All of these factors make the task extremely difficult and suggest that much more research efforts be made towards practical application.

2.5 Summary

In this chapter, we have given an introduction to speaker verification and a brief review on the state-of-the-art techniques. Front-end feature extraction is described in detail. Then we explained how to build a speaker model based on a
Chapter 2. Speaker Verification

GMM. Various effective ways of improving the SV performance, e.g. the better feature representations, endpoint detection and UBM adaptation method, are discussed. Some of these choices are justified through our experimental studies.

Gaussian mixture models (GMM), especially adapted GMMs, are the models most often used primarily due to their modest computational requirements and consistently high performance. The method of UBM adaption to speaker verification is becoming a dominant approach. It provides superior performance over those decoupled systems, e.g. Cohort method, where speaker model are trained independent of the background model. The effectiveness of this approach is well validated by our experimental results.
Chapter 3

Verbal Information Verification

3.1 Introduction

The previous chapter describes the state-of-the-art techniques of text-independent speaker verification, in which only voice characteristics of speakers are inspected. Verbal information verification (VIV) was proposed as a complementary approach to speaker verification to provide higher level of security [2]. It requires the user to speak out his/her personal information to verify the claimed identity. Different kinds of questions can be designed to implement different security levels, which could be used for users with different authorization level when accessing a security system. VIV doesn’t require the enrollment process and hence suffers less from the acoustic mismatch problem. VIV can also be used during the process of collecting enrollment data for the speaker verification task [24].

There are two major approaches to VIV, which are based on the techniques of automatic speech recognition (ASR) and utterance verification (UV) respectively. With the ASR approach, the spoken input is first transcribed into a sequence of words by a sophisticated large vocabulary speech recognizer. The transcribed words are then compared against the information pre-stored in the claimed speaker’s personal profile. With utterance verification, the spoken input is verified against an expected sequence of acoustic models. This model sequence corresponds to a word or subword level transcription derived from the
personal data profile of the claimed individual. The UV approach has been preferably employed in most VIV systems since the ASR approach doesn’t effectively utilize the registered information in the user’s profile [2]. Throughout this thesis, we focus on the UV approach.

In this chapter, we will present the fundamentals of utterance verification approach to VIV. The sequential utterance verification for VIV will be briefly introduced, which is designed to further enhance the level of security.

3.2 Utterance Verification for VIV

The idea of utterance verification for computing confidence score was commonly used for keyword spotting and nonkeyword rejection (e.g.,[25][26][27][28][29]). A block diagram of a typical UV process for VIV is shown as in Fig. 3.1. Three key modules, utterance segmentation by forced decoding or forced alignment, subword hypothesis testing and utterance-level confidence scoring, will be described in detail.

![Figure 3.1: Utterance verification approach to VIV.](image-url)
3.2.1 Forced Alignment

The VIV system prompts only one single question at a time. The expected key information to the prompted question and the corresponding subwords sequences S are known. The subword model sequence $\lambda_1, \ldots, \lambda_N$ are used to decode the answer utterance. This process is known as forced alignment. Viterbi algorithm is employed to determine the maximum likelihood segmentations of the subwords [1], i.e.

$$P(\mathbf{O}|\mathbf{S}) = \max_{t_1, t_2, \ldots, t_N} P(O_{t_1}^1|S_1) P(O_{t_1+1}^2|S_2) \ldots P(O_{t_{N-1}+1}^N|S_N)$$ \hspace{1cm} (3.1)$$

where

$$\mathbf{O} = \{O_1, O_2, \ldots, O_N\} = \{O_{t_1}^1, O_{t_1+1}^2, \ldots, O_{t_{N-1}+1}^N\}$$ \hspace{1cm} (3.2)$$

is a segmented sequence of feature vectors. t_1, t_2, \ldots, t_N denote the end frame of each subword segment, and $O_n = O_{t_n-1+1}^{t_n}$ is the segmented sequence of observations corresponding to the subword S_n, which is from frame t_n-1+1 to frame t_n, where $t_1 \geq 1$ and $t_i > t_{i-1}$.

3.2.2 Subword Hypothesis Test

Given a decoded subword, S_n with the features \mathbf{O}_n, we need a decision rule by which the subword is assigned to either hypothesis H_0 or H_1. H_0 means that \mathbf{O}_n consists of the subword S_n, and H_1 is its alternative hypothesis. There are two types of errors in binary-testing problem. Type I is false rejection and type II is false acceptance. Likelihood ratio test (LRT) is one of the most powerful tests for binary decision. It minimizes the error for one type while maintaining the error for the other type constant. Eq. (3.3) illustrates LRT used in VIV [1],

$$r(\mathbf{O}_n) = \frac{P(\mathbf{O}_n|H_0)}{P(\mathbf{O}_n|H_1)} = \frac{P(\mathbf{O}_n|\lambda_n)}{P(\mathbf{O}_n|\bar{\lambda}_n)}$$ \hspace{1cm} (3.3)$$

where λ_n and $\bar{\lambda}_n$ are the target model and corresponding anti-model for the S_n respectively. The target model, λ_n, is trained using the data of subword S_n; the anti-model, $\bar{\lambda}_n$ is trained using data of a set of subwords other than S_n (More details about the design of target and anti-models will be addressed in Chapter
4). The log likelihood ratio for subwords S_n is

$$R(O_n) = \log P(O_n|\lambda_n) - \log P(O_n|\bar{\lambda}_n).$$ \hspace{1cm} (3.4)

For normalization, the average LLR over the subword segment is computed as

$$R_n = \frac{1}{l_n} \left[\log P(O_n|\lambda_n) - \log P(O_n|\bar{\lambda}_n) \right]$$ \hspace{1cm} (3.5)

where l_n is number of frames in the segment. The subword-level decision can be made by

$$\begin{cases}
\text{Acceptance} & R_n \geq T_n \\
\text{Rejection} & R_n < T_n
\end{cases}$$ \hspace{1cm} (3.6)

with either a subword-dependent threshold value T_n or a shared threshold T for all different subword units.

3.2.3 Confidence Measure

The confidence measure for utterance verification is the result of combining subword-level verification scores. It is a joint statistics and a function of the likelihood ratios of all constituting subwords. Various forms of confidence measures have been proposed (e.g. [28][27]). Two of them are described below.

The first confidence measure is defined as,

$$CM_1 = \frac{1}{L} \sum_n l_n \cdot R_n$$ \hspace{1cm} (3.7)

where L is the total duration of the utterance, i.e. $L = \sum_n l_n$. CM$_1$ is exactly the frame-level average of the log likelihood difference.

The other confidence measure is based on subword segment-based normalization. It is simple average of log likelihood ratios over all subwords, i.e.,

$$CM_2 = \frac{1}{N} \sum_n R_n$$ \hspace{1cm} (3.8)

where N is the total number of subwords in the phrase.

As reported in [27] and also from our experiments (See Fig. 3.2), these confidence measures have a large dynamic range. It is highly preferred that a statistic have a stable and limited numerical range, so that a common threshold
can be determined for all subwords [1]. If different subwords must have different thresholds, the system operation would be much complicated. Furthermore, decision thresholds should be determined to meet different applications.

A useful confidence measure should reflect the percentage of acceptable subwords in a key utterance. We need to make decisions at both subword and utterance levels. To make a decision on the subword level, we need to determine the threshold for each of the subword tests. If we have the training data for each subword model and the corresponding anti-subword model, this would be straightforward. However, in many cases, such data are not available. Therefore, we need to design a test that gives us the convenience to determine the threshold independent of subwords. Such a test was proposed in [2]. For subword \(S_n \), we define

\[
C_n = \frac{\log P(O_n|\lambda_n) - \log P(O_n|\overline{\lambda}_n)}{-\log P(O_n|\overline{\lambda}_n)}
\]

(3.9)

where \(\lambda_n \) and \(\overline{\lambda}_n \) denote respectively the target model and anti-model for the subword \(n \). For utterance-level decision, the results from subword tests need to be combined. If the utterance contains \(N \) subword units, the normalized confidence measure is given by,

\[
CM_3 = \frac{1}{N} \sum_{n=1}^{N} f(C_n),
\]

(3.10)

where,

\[
f(C_n) = \begin{cases}
1, & \text{if } C_n \geq \theta \\
0, & \text{otherwise}
\end{cases}
\]

(3.11)

In Eq. (3.9), the subword-level confidence score is normalized with the negative likelihood score from the anti-model. By doing this, the confidence scores of different subword units would have similar dynamic range of values. As a result, it becomes possible to derive a threshold \(\theta \) for Eq. (3.11) that is subword independent. Based on our empirical study, the subword-independent optimal threshold for our VIV system is set to 0.02. In Eq. (3.10), the utterance-level confidence score \(CM_3 \) has the value between 0 and 1. It can be roughly interpreted as the percentage of verified subwords in the utterance. When \(CM_3 \)
is greater than a threshold, the utterance would be accepted and the user’s identity is verified. Otherwise it would be rejected.

Figure 3.2: Histograms for the utterance-level scores for two classes. One class of data is from clients and the other class of data is from impostors. From top left to bottom right: (a) using averaged target likelihood scores without likelihood ratio test, (b) using CM1 confidence measure, (c) using CM2 confidence measure, (d) using CM3 confidence measure.

Fig. 3.2 compares different confidence measures described above. Given two classes of data (i.e., utterance-level scores from client data and impostor data), a good confidence measure should separate two sets of data as much as possible. In other word, the overlapping area between histograms of two classes should be as small as possible. Clearly, in the top-left plot where the likelihood ratio test (LRT) is not applied (i.e., average target likelihood is used as utterance-level score), there is a significant overlap between two histograms. Among three other plots where LRT is applied, the performances of CM1 and CM2 are more
or less the same. The overlapping with CM$_3$ is significantly reduced, making it easier to set the optimal threshold. CM$_3$ will be used in our VIV system.

In practice, since silence bears no discriminative power in differentiating subwords, they are excluded from computing confidence measure. Another issue is that the same sentence or word may be spoken in several different ways. There would be errors in time alignment when the real content of an utterance does not exactly match the corresponding item in the user’s profile. Intuitively, we can perform forced alignment for each possible candidate. The one with the highest likelihood scores can be used for subsequent processing.

3.3 Sequential Utterance Verification for VIV

3.3.1 Practical Security Consideration

In order to enhance the security level, sequential verification process is commonly adopted in VIV application. It means that more than one test utterance are used. The users would be accepted only if all of these utterances pass the test. Intuitively, the more the subtests, the less the false acceptance (FA) errors and the more the false rejection (FR) errors. Therefore, we can have the following strategy in a practical VIV system design: starting from the first subtest, we set the threshold value 1 such that the FR error rate for the subtest is close to zero or a small number according to design specifications, then add more subtests in the same way until meeting the required system FA error rate, or reaching the maximum numbers of allowed subtests [1].

3.3.2 Robust Interval

Due to variability of speech signals, the computed confidence measure may not have the same value even if the same person speaks the same utterance twice. 1In our experiment, this threshold is 79.5%. The detailed procedure for find the threshold is as follows: start it with 1 and find the FR rate; decrease it by 0.01 and find the FR rate again until the threshold meet 0; select that particular threshold value at which the FR rate just drops down to zero.
Chapter 3. Verbal Information Verification

Figure 3.3: False acceptance rate as a function of robust interval for a 0% false rejection rate.

The concept of robust interval was introduced to provide certain flexibility in system design [2]. It allows the system to accept an utterance even if the confidence measure is lower than that of previous trials. The robust interval is defined as the maximum percentage of threshold relaxation that gives no false rejection (FR) can be avoided. It serves as a good performance index of the system. Mathematically, the threshold is defined as

\[T' = T - \tau, \quad 0 \leq \tau \leq T \leq 1 \]

(3.12)

where \(\tau \) is the robust interval and \(T \) is the utterance-level threshold \(^1\).

In our simulation, a context-independent threshold is determined by first obtaining \(T \) at the moment that the system has a zero false rejection rate. We can keep decreasing the threshold \(T' \) until a false acceptance occurs. It is evident from Fig. 3.3 that the VIV system can have an EER of 0.00% so long as two question are asked. In case that three questions were asked, VIV can provide the robust interval up to 15%.

\(^1\)Note that our formulation is sightly different from others in [30] and [6] in that a context-independent threshold is employed here instead of context-dependent one.
3.4 Application and Further Improvement

Constructing databases is a must for almost all speech applications. Recorded voices need to be compared against the prompted texts. This is an essential step to make the data useful. However, manual verification and annotation is very time consuming and expensive in terms of efforts, simply because the amount of speech database is usually large. VIV’s capability of verifying subwords make it a natural choice for the task of database validation. It can pinpoint those erroneous recordings from tens of thousands utterances. This is indeed very useful in practice.

Refining of the VIV system can be done in the following ways. First, speaker-independent (SI) models can be replaced by speaker-dependent (SD) models in utterance segmentation in that the SD models tend to produce more consistent phoneme segmentation than the SI models. Second, speaker-dependent and context-dependent threshold can be used instead of the speaker-independent and context-independent threshold.

3.5 Summary

In this chapter, verbal information verification for speaker authentication is introduced. The main approach to VIV, utterance verification and its key components are described in detail. In particular, we have justified our choice of the confidence measure through experimental study. Practical considerations for security issues has been suggested. Sequential utterance verification hereby has been employed in achieving higher level of security. Finally, a practical application have been suggested.
Chapter 4

Model Design for Cantonese
Verbal Information Verification

4.1 General Considerations

In the VIV process as described in the previous chapter, the target models are
used to provide time alignment of the subword segments, and to produce the
likelihood \(\log P(O_n | \lambda_n) \) for each subword. The accuracy of time alignment de-
pends on the acoustic models used. Context-dependent (CD) acoustic modeling
at phoneme level is considered to be most appropriate for target modeling. On
the other hand, anti-models should be designed to separate the data (speech
containing the expected subwords) from the non-data (speech not containing
the expected subwords) as far as possible [31].

4.2 The Cantonese Dialect

As one of the major Chinese dialects, Cantonese is the mother tongue of 60
million population in Southern China and Hong Kong. Cantonese is a mono-
syllabic and tonal language. Each Chinese character is pronounced as a single
syllable carrying a specific tone. Each syllable can be divided into an Initial and
a Final. The Initial is typically a consonant while the Final consists of a vowel
nucleus and an optional nasal or stop coda [32][33]. Throughout our research,
the phonemic transcription scheme proposed by the Linguistic Society of Hong Kong (LSHK) is adopted [34].

4.3 Target Model Design

Cantonese has 20 Initials and 53 Finals, constituting about 660 base syllables [32]. In continuous speech recognition of Cantonese, CD Initial-Final (IF) models, namely BiIF or TriIF models¹, have been commonly used [32]. Decision-tree tying method was commonly adopted to tackle the problem of sparse training data [35]. In our research, the target models are Speaker-independent (SI) BiIFs as they can produce reasonable recognition accuracy at affordable model complexity and computation cost [36]. Each Initial model is a HMM with 3 states and each Final model has 5 states. These HMMs were trained on a continuous speech database, named CUCALL, which was collected over telephone at the Chinese University of Hong Kong [23]. For base syllable recognition, these acoustic models attained an accuracy of 54.61% in large-vocabulary continuous speech recognition (LVCSR). Fig. 4.1 shows the typical result of forced alignment done by both manual and automatic approach. Compared to the manual alignment, the resulted automatic time alignment are fairly acceptable for subword based utterance verification though the model may not be good enough for general speech recognition applications.

4.4 Anti-Model Design

4.4.1 Role of Normalization Techniques

The most significant factor affecting speaker authentication performance is the variation of the signal characteristics from trial to trial (inter-session variability and variability over time) [37]. Variations arise from the speakers themselves, from differences in recording and transmission conditions, and from background

¹BiIF refers to the right context dependent IF model and TriIF refers to the left and right context dependent IF model
noise. It is impossible for people to repeat an utterance precisely in the same way from trial to trial. It is well known that samples recorded in one session are much more correlated than those recorded in separate sessions. There are also long-term changes in voices, e.g., aging.

It is important for speaker authentication systems to accommodate to these variations. There are mainly two types of normalization techniques that have been tried; one in the parameter domain, and the other in the distance/similarity domain.

A typical normalization technique of parameter domain is the Cepstral Mean Subtraction (CMS) [13], which has been proved to be very effective for speech and speaker recognition applications.

As one of the normalization methods for distance (similarity, likelihood) domain, likelihood ratio test is effective to improve the performance of both SV and VIV system. The likelihood score tends to be more stable and less variable than the unnormalized reference model score [3]. The question here is how to construct anti-models that would provide the normalizing or anti-likelihood score. There have been many individual suggestions [7][31]. However, the general principles for anti-model design have not been seriously investigated.
4.4.2 Context-dependent versus Context-independent Anti-models

To facilitate the hypothesis test in Cantonese VIV (See Section 2, Chapter 3), anti-models for different Initials and Finals need to be established. The anti-models can be either context-dependent (CD) or context-independent (CI) [31][38]. In Mandarin VIV [6], it was reported that the performance with CD anti-models is worse than that by CI anti-models.

Let a be the subword unit being modeled and XaY be one of its contextual variation, where X and Y denote the left and right context respectively. In CD anti-modeling, the anti-model for XaY is trained by the data that are labeled as $X\hat{a}Y$, where $\hat{a} \neq a$. In other words, a training token for the anti-model must have different subword identity, i.e. $\hat{a} \neq a$ but the same context, i.e. X and Y. Those segments in which both subword identity and context are different from XaY are excluded from training. If an impostor utterance contains such an “unseen” segment, the anti-model would generate a relatively low likelihood and a false acceptance (FA) error may occur. On the other hand, CI anti-models do not have the problem because all tokens with different subword identity, no matter what contexts they have, are used for training. CI anti-models are easily constructed, and usually have more training data than CD models. This makes the parameter estimation more reliable. In this study, we propose the use of CI anti-models.

4.4.3 General Approach to CI Anti-modeling

For each Initial/Final model, a corresponding anti-model needs to be trained for the verification task. Then there would be 20 Initial anti-models and 53 Final anti-models. The phonological structure of Chinese language implies that an Initial must be followed by a Final. For each Initial model, all training data for other Initials should be used to train its anti-model, and those for Finals are not used. The same training strategy applies also to the anti-modeling of Finals. This kind of anti-models is referred to as Global anti-models.
4.4.4 Sub-syllable Clustering

However, for training an Initial/Final Global anti-model, data from all other phonemes are used. This may render the resulted multivariate pdf very smooth and thus lack of discriminative power. To deal with this deficiency, the CI sub-syllable models are grouped based on their confusability [8]. The Initial and Final models are treated separately. As a result, six and nine clusters are generated for Initials and Finals respectively. The clustering of sub-syllable can be based on the confusion matrix resulted from LVCSR experiments or the K-means clustering algorithm that minimizes the overall inter-syllable group distance [38]. Clustering results based on these two approaches are shown in Table 4.1 and Table 4.2 respectively.

<table>
<thead>
<tr>
<th>Models</th>
<th>ID (#)</th>
<th>Sub-syllable Cohort Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initials 1</td>
<td>(3)</td>
<td>[j],[l],[w]</td>
</tr>
<tr>
<td>2</td>
<td>(4)</td>
<td>[p],[t],[k],[kw]</td>
</tr>
<tr>
<td>3</td>
<td>(4)</td>
<td>[null],[m],[n],[ng]</td>
</tr>
<tr>
<td>4</td>
<td>(4)</td>
<td>[g],[d],[b],[gw]</td>
</tr>
<tr>
<td>5</td>
<td>(3)</td>
<td>[c],[z],[s]</td>
</tr>
<tr>
<td>6</td>
<td>(2)</td>
<td>[f],[h]</td>
</tr>
<tr>
<td>Finals 1</td>
<td>(9)</td>
<td>[aa],[aau],[aat],[aap],[aan],[aam],[aak],[aat],[aang]</td>
</tr>
<tr>
<td>2</td>
<td>(8)</td>
<td>[an],[at],[ap],[an],[am],[ak],[ai],[ang]</td>
</tr>
<tr>
<td>3</td>
<td>(7)</td>
<td>[o],[ou],[ot],[on],[ok],[oi],[ong]</td>
</tr>
<tr>
<td>4</td>
<td>(8)</td>
<td>[i],[ik],[im],[in],[ip],[it],[iu],[ing]</td>
</tr>
<tr>
<td>5</td>
<td>(6)</td>
<td>[u],[ui],[uk],[un],[ut],[ung]</td>
</tr>
<tr>
<td>6</td>
<td>(4)</td>
<td>[e],[ei],[ek],[eng]</td>
</tr>
<tr>
<td>7</td>
<td>(6)</td>
<td>[eot],[eon],[eoi],[oeng],[oe],[oek]</td>
</tr>
<tr>
<td>8</td>
<td>(3)</td>
<td>[yu],[yun],[yut]</td>
</tr>
<tr>
<td>9</td>
<td>(2)</td>
<td>[ng],[m]</td>
</tr>
</tbody>
</table>

Table 4.1: Cantonese Sub-syllable Clustering based on Confusion Matrix

The two methods produce somewhat similar results. In this thesis, we chose
Chapter 4. Model Design for Cantonese Verbal Information Verification

<table>
<thead>
<tr>
<th>Models</th>
<th>ID (#)</th>
<th>Sub-syllable Cohort Set</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initials</td>
<td>1 (2)</td>
<td>[j], [l]</td>
</tr>
<tr>
<td></td>
<td>2 (4)</td>
<td>[p], [t], [k], [kw]</td>
</tr>
<tr>
<td></td>
<td>3 (4)</td>
<td>[null], [m], [n], [ng]</td>
</tr>
<tr>
<td></td>
<td>4 (3)</td>
<td>[g], [d], [b]</td>
</tr>
<tr>
<td></td>
<td>5 (4)</td>
<td>[c], [z], [s], [f]</td>
</tr>
<tr>
<td></td>
<td>6 (2)</td>
<td>[gw], [w]</td>
</tr>
<tr>
<td>Finals</td>
<td>1 (9)</td>
<td>[aa], [aau], [aat], [aap], [aan], [aam], [aak], [aai], [aang]</td>
</tr>
<tr>
<td></td>
<td>2 (8)</td>
<td>[an], [at], [ap], [an], [am], [ak], [ai], [ang]</td>
</tr>
<tr>
<td></td>
<td>3 (7)</td>
<td>[o], [ou], [ot], [on], [ok], [oi], [ong]</td>
</tr>
<tr>
<td></td>
<td>4 (8)</td>
<td>[i], [ik], [im], [in], [ip], [it], [iu], [ing]</td>
</tr>
<tr>
<td></td>
<td>5 (6)</td>
<td>[u], [ui], [uk], [un], [ut], [ung]</td>
</tr>
<tr>
<td></td>
<td>6 (4)</td>
<td>[e], [ei], [ek], [eng]</td>
</tr>
<tr>
<td></td>
<td>7 (6)</td>
<td>[eot], [eon], [eoi], [oeng], [oe], [oek]</td>
</tr>
<tr>
<td></td>
<td>8 (3)</td>
<td>[yu], [yun], [yut]</td>
</tr>
<tr>
<td></td>
<td>9 (2)</td>
<td>[ng], [m]</td>
</tr>
</tbody>
</table>

Table 4.2: Cantonese Sub-syllable Clustering based on K-means Clustering

to construct anti-models based on confusion matrix approach.

4.4.5 Cohort and World Anti-models

Given a sub-syllable unit (Initial or Final), speech data labeled as any other units within the same cluster are used to train the anti-model of this unit. In this way, the anti-model becomes a characterization of the most confusable or competitive sub-syllable units. This is similar to the Cohort background models in speaker verification. Therefore, they are referred to as Cohort anti-models.

There is another kind of anti-models which is known as World anti-models [18][7]. In this case, all units in the same cluster share an anti-model, which is trained by the data from all the other clusters. For performance comparison among different anti-modeling methods, we define the following terms:
In-set impostoring: A impostor utterance happens to contain a subword that is confusable with the correct one, i.e., the impostor and true ones are in the same cohort set.

Out-set impostoring: A impostor utterance happens to contain a subword that is not confusable with the correct one, i.e., the impostoring and true ones are in different cohort sets.

Theoretically, the Cohort anti-models could reject those in-set impostoring subwords quite well. Meanwhile, it may wrongly admit those out-set impostoring ones. On the other hand, the World anti-models would reject those out-set impostoring subwords properly while accepting those in-set impostoring ones mistakenly. It is therefore natural to combine the decisions from the two methods to achieve the optimal performance since they are complementary to each other. This method is referred to as combined Cohort-and-World (C&W) anti-models. The joint decision is made based on score-level fusion, i.e.,

$$S = \alpha \cdot S_{world} + (1 - \alpha) \cdot S_{cohort}$$

(4.1)

where S is the combined subword-level confidence score, S_{world} and S_{cohort} are the confidence scores produced by World and Cohort methods respectively. In Eq. (4.1), α is a weighting factor ranging from 0 to 1.

From the implementation point of view, there are usually sufficient training data for the World anti-models, but not for the Cohort anti-models. In addition, the time needed for the training of different anti-models varies as shown in Table 4.3.

<table>
<thead>
<tr>
<th>Anti-model</th>
<th>Cohort</th>
<th>World</th>
<th>Global</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time Consumption</td>
<td>24 hours</td>
<td>72 hours</td>
<td>14×24 hours</td>
</tr>
</tbody>
</table>

Table 4.3: Comparisons of training time of different anti-models (Training were carried out on a PC with Pentium 4 processor)
4.4.6 GMM-based Anti-models

Parametric models have become the predominant approach to pattern classification problems. The advantage is that the models can be defined with a small number of parameters, e.g., means and covariance matrices. Once those parameters are estimated from training samples, the whole distribution is completely specified. Two issues need to be considered beforehand. The first is about the model structure and the second is about the complexity of models ever selected.

Intuitively, the model structure or topology of anti-models should be the same as that of the target models. In other words, the anti-models for Initial and Final would be left-to-right HMMs that have 3 and 5 states respectively. In [8], we proposed to use GMM-based anti-models instead of HMM-based ones. And the result highly favors the proposed method. GMM-based anti-models consistently outperformed HMM-based anti-models. Explanations to this phenomenon are given below.

HMM is well-known for its capability to characterize the spectral properties of dynamic speech signals [39]. The HMM models not only the underlying speech sounds, but also the temporal sequencing among these sounds. When modeling the phonetic units using an HMM, we assume that all the observation sequences labeled as the same phonetic unit do hold the same or similar temporal sequence, which is an important property to be captured by the HMM. We can say that temporal structure modeling is advantageous for target model.

But it is not the case for anti-modeling. As we stated before, the anti-model for a phonetic unit is trained by the speech data from many other phonetic units. Among the training data from a specific phoneme, there does exist a characteristic inherent temporal sequence. However, among training data from distinct phonemes, this inter-phoneme temporal relation does not exist and the fundamental assumption of HMM acoustic modeling becomes inappropriate. Temporal structure of speech should not be taken into account in the anti-modeling for VIV. This is similar to speaker modeling in text-independent speaker recognition, where Gaussian components can be considered to be modeling the broad class of phonetic sounds.
Gaussian Mixture Models could be thought of as a single-state HMM with a Gaussian mixture observation density, or an ergodic Gaussian observation HMM with fixed equal transition probabilities. It can also be viewed as a hybrid between parametric and nonparametric density model. Like a parametric model, it has the structure and parameters that control the behavior of the density in a known way, but without the constraints that the data must be of a specific distribution type. Like a nonparametric model, the GMM has many degrees of freedom to allow arbitrary density modeling, without undue computation and storage demands [18].

Therefore, by using GMM for anti-modeling, the temporal sequence beneath the observation vectors from different phonemes is implicitly blurred or not taken into account. We believe that this structure is more appropriate.

4.5 Simulation Results and Discussions

Experiments are carried out for each of the anti-model design described in the previous section.

The acoustic features used in VIV experiments are the first 12 mel-frequency cepstral coefficients (MFCC) together with the short-time energy. The features are energy normalized and cepstral mean normalized. By including the first and second order derivatives of the parameters, each feature vector has 39 components.

4.5.1 Speech Databases

The speech database used to train speaker-independent BiIF target models and context-independent anti-models is also part of CUCALL™. The corpus consisting of continuous Cantonese sentences is selected. Table 4.4 summarizes the statistics on this corpus.

The testing database used for VIV performance evaluation is the same as the one used in SV experiment (See Section 4, Chapter 2).
Table 4.4: Statistics of the Sentence Corpus of CUCALL

<table>
<thead>
<tr>
<th></th>
<th>Training Set</th>
<th>Testing Set</th>
</tr>
</thead>
<tbody>
<tr>
<td># of Speakers</td>
<td>679</td>
<td>80</td>
</tr>
<tr>
<td># of Utterances</td>
<td>17.6K</td>
<td>2.4K</td>
</tr>
<tr>
<td># of Syllables</td>
<td>237.6K</td>
<td>23.3K</td>
</tr>
<tr>
<td>Total Length</td>
<td>29.6 (hours)</td>
<td>2.5 (hours)</td>
</tr>
<tr>
<td>Avg SenLen</td>
<td>13.5</td>
<td>9.7</td>
</tr>
</tbody>
</table>

4.5.2 Effect of Model Complexity

The number of mixture components per state for each anti-model affects the overall system performance. The optimal number of mixtures are determined empirically (See Fig. 4.2, which is based on Global anti-models).

![Effects of Model Complexity](image)

Figure 4.2: Equal Error Rate vs. Model Complexity

From these results, we conclude that the optimal number of mixture components of each state is 2 for HMM-based anti-models, and 16 for GMM-based anti-models. These optimal number of mixture components are selected in the following experiments.
4.5.3 Comparisons among different Anti-models

First, we compare among the anti-models that are constructed differently. We need to determine the optimal weighting factor α in the combined Cohort-and-World (C&W) anti-models. As shown in Fig. 4.3, the optimal value of α is found to be 0.9 for both HMM-based and GMM-based anti-models. This indicates that more confidence is put on the World anti-models.

![Figure 4.3: Equal Error Rate vs. Weighting factor α in combined Cohort-and-World (C&W) anti-models](image)

Figure 4.3: Equal Error Rate vs. Weighting factor α in combined Cohort-and-World (C&W) anti-models

It is worth emphasizing that all the above experimental results were obtained using the same subword time alignments and the acoustic models used.
Figure 4.4: Comparisons of system performance based on various context-independent anti-models.

for alignment have a base syllable recognition accuracy of less than 60%. This clearly indicates that the design of anti-models is most critical in VIV, where the time alignment doesn’t have to be very precise.

4.5.4 Discussions

There are several factors causing decision errors. These include acoustic environment and handset mismatches between the training and testing conditions. In our experiments, digit strings are used as test utterances. It is highly likely that the impostor utterance contains similar phoneme sequences to the client one. The proposed method of anti-modeling can maximize the capability of VIV to make the correct decisions. It is expected that error-free performance could be achieved when VIV is integrated into SV.
4.6 Summary

Based on the UV framework, there are three key modules that determine the system performance. They are the target models, anti-models and confidence measures respectively. Among them, the design of anti-models play the most important role since they greatly affect the overall performance of VIV system.

In this chapter, we have studied different design strategies for anti-modeling for Cantonese verbal information verification. A thorough discussion of various methods of constructing anti-models has been provided. An new technique in anti-modeling was proposed and the motivations were presented.

From the experimental results on VIV, it can be concluded that the combined Cohort-and-World GMM-based anti-models perform the best among all designs of anti-models. It is also found that the recognition accuracy of the target models did not much affect the system performance. We believe that our findings can be applicable to other languages, especially those with similar phonological structure with Cantonese, e.g., Mandarin.
Chapter 5

Integration of SV and VIV

In the previous chapters, we have described SV and VIV systems individually. In this chapter, we explore how to integrate the two systems to make a more reliable decision. The approaches to information fusion have been used in different applications of pattern classification like speech recognition and handwriting recognition. This problem remains to be an open topic and thorough discussions would not be the goal of this study. In this chapter, we formulate the integration problem into a binary classification problem with 2D input features. Three ways of integration are suggested and investigated. Fundamentals of these methods are briefly presented and their strength and weakness are also addressed.

5.1 Introduction

SV and VIV are using different information carried in the utterances. We expected that combining the expertise of these individual systems will further improve the verification performance.

Fig. 5.1 and Fig. 5.2 show the histogram plots of SV and VIV scores, respectively. Obviously, there is always some overlaps between the client and the impostor data for both systems. In other words, it is impossible to completely separate these data no matter what threshold is used. If the likelihood scores from two verification systems are combined, it is possible to find a hyperplane or curve to completely separate the client and impostor data, as shown in Fig. 5.3.
Figure 5.1: Histogram for the SV likelihood scores for two classes. One class is from client data and the other one is from impostor data. No single threshold value will serve to unambiguously discriminate between the two classes.

Figure 5.2: Histogram for the VIV likelihood scores for two classes. One class is from client data and the other one is from impostor data. No single threshold value will serve to unambiguously discriminate between the two classes.
This motivates us to seek for appropriate methods to integrate the two systems.

Figure 5.3: Scatter plot of VIV scores vs SV scores. The dark line could serve as a decision boundary of our classifier.

In speaker authentication, system integration can be done at different levels such as feature-level and model-level. In our case, the same kind of features is used in both systems. We will focus our discussion on combining likelihood scores of both systems.

The integrated authentication system consists of three components: SV system, VIV system and a pattern classifier or the decision maker. A block diagram is depicted as in Fig. 5.4. The input to the pattern classifier is a two-dimensional vector that is composed of the output of two systems. There have been different ways proposed to integrate SV and VIV. In [40], a speech recognizer is used to analyze the user’s answer to a specific question. With these results, the system can restrict the hypothesized space of candidates. Then a speaker recognizer handles the users’ access for this smaller candidates set. Researchers at Bell Lab proposed to combine the two verification systems incrementally [1]. In their work, VIV is used in the first 4-5 accesses. Speaker’s utterances are recorded and used to train the speaker model for SV. Later on, the authenti-
cation process can be switched from VIV to SV. In [41], an intuitive method called voting was presented to integrate two systems with two shared thresholds, and compared the performance with using speaker-specific thresholds for two independent system. A novel framework based on non-standard Support Vector Machines (SVMs) technique was proposed in [42]. This method makes it possible to adjust the tradeoff between false acceptance error and false rejection error without loss of good generalization performance of conventional SVMs.

In the following sections, we will investigate the methods of voting, support vector machines, and gaussian-based classifiers respectively.

5.2 Voting Method

The basic idea of voting is simple and intuitive. It is to compare the SV likelihood and the VIV likelihood with their respective thresholds and the decision rule is that both likelihoods or either one has to be greater than the threshold for a user access to be accepted. The method can be represented as:

\[
V_{voting}(X, I, K) = \begin{cases}
+1, & \text{if } S_{sv}(X) > \theta_{sv} \text{ and/or } S_{viv}(X) > \theta_{viv} \\
-1, & \text{otherwise}
\end{cases}
\]

(5.1)

In this section, we address the problems of how to set up the thresholds in both the SV and VIV systems and how to combine them to improve overall
5.2.1 Permissive Test vs. Restrictive Test

There are two different criteria of verification in the dual tests:

- **Permissive Test**: Speaker accepted if one of the likelihoods exceeds its corresponding threshold

- **Restrictive Test**: Speaker accepted only if both likelihoods exceed the correspondent thresholds.

In real-world applications, a system should work somewhere in between the two extreme cases. Our solution was to use a continuous function that varies between the two extreme cases with a controlled parameter β. Suppose that L_s and L_v are the SV and VIV likelihoods respectively. We first normalize them with their respective thresholds T_s and T_v as,

$$\tilde{L}_x = \frac{L_x - T_x}{|T_x|}, \quad x = \{s, v\} \quad (5.2)$$

A sigmoid function was applied for smoothing:

$$S_x = \frac{1}{1 + e^{-aL_x}} \quad (5.3)$$

The scores S_s and S_v take values between 0 and 1. Making use of these scores the restrictive and permissive tests are implemented.

$$O_{perm} = \text{Sig}_2(S_s + S_v - 0.5) - 0.5$$

$$O_{rest} = \text{Sig}_2(2 \cdot S_s \cdot S_v - 0.5) - 0.5 \quad (5.4)$$

$$\text{Sig}_2(x) = \frac{1}{1 + e^{-bx}} \quad (5.5)$$

O_{perm} is -0.5 when $L_s < T_s$ and $L_v < T_v$ and 0.5 if one of the likelihoods exceeds the threshold. O_{rest} is -0.5 or 0.5 if one of likelihoods is less than the threshold or if both likelihoods are greater than their respective thresholds. Finally, the verification test is performed as:

$$V = \beta \cdot O_{rest} + (1 - \beta) \cdot O_{perm}$$

$$V > 0 \Rightarrow Accepted \quad (5.6)$$

54
5.2.2 Shared vs. Speaker-specific Thresholds

Shared Thresholds

The first possibility is to use two thresholds shared by all speakers: one for the speaker verification likelihoods and another for the utterance verification likelihoods.

Speaker-specific Thresholds

In case that speaker-dependent thresholds are used, two thresholds per speaker (one per likelihood) can be computed using the development data. For each speaker, the variation of the false acceptance rate (FAR) and false rejection rate (FRR) against the threshold calculated for both SV and VIV systems. When the FAR and FRR curves cross each other, the threshold leading to equal error rate was taken. If the curves don’t cross, the used criterion was to take the mean of the thresholds where the rates go to zero. Examples can be seen in Fig.5.5 and Fig.5.6. In this way, we obtain two thresholds per speaker and two

![FA and FR curves cross](image)

Figure 5.5: Example of the criteria for taking the values of the thresholds when FA and FR curves cross

...likelihoods to perform a dual verification test.
5.3 Support Vector Machines

Speaker authentication can be viewed as a binary classification problem for which support vector machine is a natural choice of solution. Support vector machines (SVMs) [43] have become popular due to their attractive features and good generalization capability. They have been applied to many areas, in particular biometrics such as speaker verification [44].

The integration of SV and VIV is a simple application of SVMs. We will focus our discussion on the simplest cases, i.e., linear SVMs trained on linearly separable cases. SVMs in principle can be generalized to non-linearly separable cases.

We start with the simplest case: linear machines trained on separable data. First, label the training data as \(\{x_i, y_i\}, \ i = 1, ..., l, \ y_i \in \{-1, +1\}, \ x_i \in \mathbb{R}^d \). Suppose we have a hyperplane which separates the positive from the negative examples (a “separating hyperplane”). The points \(x \) which lie on the hyperplane satisfy \(w \cdot x + b = 0 \), where \(w \) is normal to the hyperplane, \(|b|/\|w\| \) is the perpendicular distance from the hyperplane to the origin, and \(\|w\| \) is the Euclidean norm of \(w \). Let \(d_+(d_-) \) denote the shortest distance from the sepa-
Chapter 5. Integration of SV and VIV

rating hyperplane to the closest positive (negative) example. \(d_+d_- \) is defined as the “margin” of the separating hyperplane. For the linearly separable case, the support vector algorithm simply looks for the separating hyperplane with the largest margin. This can be formulated as follows [45]. Suppose that all training data satisfy the following constraints:

\[
\begin{align*}
\mathbf{x}_i \cdot \mathbf{w} + b &\geq +1 \quad \text{for } y_i = +1 \\
\mathbf{x}_i \cdot \mathbf{w} + b &\leq +1 \quad \text{for } y_i = -1
\end{align*}
\]

(5.7) (5.8)

They can be combined into one set of inequalities:

\[
y_i(\mathbf{x}_i \cdot \mathbf{w} + b) - 1 \geq 0 \quad \forall i
\]

(5.9)

Consider the points for which the equality in Eq. (5.7) holds. These points lie on the hyperplane \(H_1 : \mathbf{x}_i \cdot \mathbf{w} + b = 1 \) with the normal \(\mathbf{w} \) and the perpendicular distance from the origin \(|1 - b|/||\mathbf{w}|| \). Similarly, the points for which the equality in Eq. (5.8) holds lie on the hyperplane \(H_2 : \mathbf{x}_i \cdot \mathbf{w} + b = -1 \), with the normal again \(\mathbf{w} \), and the perpendicular distance from the origin \(|-1 - b|/||\mathbf{w}|| \). Hence \(d_+ = d_- = 1/||\mathbf{w}|| \) and the margin is simply \(2/||\mathbf{w}|| \). Note that \(H_1 \) and \(H_2 \) are parallel and that no data points fall between them. Thus we can find the pair of hyperplanes which gives the maximum margin by minimizing \(||\mathbf{w}||^2 \), subject to constraints of Eq. (5.9).

The solution to a typical two-dimensional case has the form shown as in Fig. 5.7. The data points for which the equality in Eq. (5.9) holds (i.e. those which wind up lying on one of the hyperplanes \(H_1, H_2 \), and whose removal would change the solution, are called support vectors. They are indicated in Fig. 5.7 by the extra circles.

Therefore, the primal problem of optimization is formulated as follows [45]:

\[
\begin{align*}
\min & \quad ||\mathbf{w}||^2 \\
\text{s.t.} & \quad y_i(\mathbf{x}_i \cdot \mathbf{w} + b) - 1 \geq 0, \quad \forall i
\end{align*}
\]

(5.10)

Normally, we will not directly solve the primal problem. We solve the dual problem instead. The procedures in formulating dual problem are described below [45]:

57
Figure 5.7: Linear separating hyperplanes for the separable case. The support vectors are circled. (after Burges [45])

We switch to a Lagrangian formulation of the primal problem. There are two reasons of doing this. First, the constraints of Eq. (5.9) will be replaced by constraints on the Lagrangian multipliers themselves, which will be much easier to handle. Second, in the formulation, the training data will only appear in the form of dot products between vectors. This is a crucial property that allows us to generalize the procedures to the nonlinear cases.

We introduce the positive Lagrangian multipliers $\alpha_i, i = 1, \ldots, l$, one for each of the inequality constraints in the Eq. (5.9). This gives Lagrangian:

$$L_P(w, b, \alpha) \equiv \frac{1}{2} \|w\|^2 - \sum_{i=1}^{l} \alpha_i \cdot y_i(x_i \cdot w + b) + \sum_{i=1}^{l} \alpha_i$$

(5.11)

Then, construct the dual function $L^*(\alpha)$, which is given below:

$$L^*(\alpha) = \min_{w, b} L_P(w, b, \alpha).$$

(5.12)

We minimize L_P with respect to w, b. Equivalently, it requires that the gradient of L_P with respect to w and b vanish, which gives the conditions:

$$w = \sum_i \alpha_i y_i x_i$$

(5.13)

$$\sum_i \alpha_i y_i = 0.$$

(5.14)

Since these are equality constraints in the dual formulation, we can substitute them into Eq. (5.10) to give the final formulation [45]

$$\max L_D = \sum_i \alpha_i - \frac{1}{2} \sum_{i,j} \alpha_i \alpha_j y_i y_j x_i \cdot x_j$$

s.t $\alpha_i \geq 0, \forall i.$

(5.15)
The training of support vectors (for linearly separable case) therefore is done by maximizing L_D with respect to α_i, subject to constraints in Eq. (5.15) and positivity of α, with the solution given by Eq. (5.13).

Training of SVMs are not illustrated here. It involves solving a quadratic programming problem that scales quadratically with the number of examples. Practical training of SVMs can use the decomposed training algorithm in [46], where for selecting the working set, the approximation proposed by Joachims in [47] is used.

Once the values of α_i have been found from Eq. (5.12), Eq. (5.13) can then be used to determine w. Once w is found, it can be in turn be plugged into Eq. (5.16) to determine the value of threshold b:

$$b = 1 - x_k \cdot w,$$

where $y_k = 1$ and $x_k \in S$.

$$f(x) = w \cdot x + b = \sum_{i=1}^{N} y_i \alpha_i (x \cdot x_i) + b = 0. \quad (5.17)$$

5.4 Gaussian-based Classifier

SVM is a nonparametric approach. In this section, we will investigate a parametric approach that could be used in our case. For parametric approaches, we need to consider the model structure and its complexity.

In our case, the input feature is two-dimensional vector composed of SV and VIV likelihood scores. It is therefore easy to visualize the distribution in order to determine the appropriate structure for modeling the distribution. We use a set of development data to visualize the data distribution as in Fig. 5.3. From a cluster perspective, most biometric data cannot be adequately modeled by a single-cluster Gaussian model. However, they often can be accurately modeled via a Gaussian Mixture Model (GMM), i.e., data distribution can be expressed as a mixture of multiple normal distributions. From Fig. 5.3, GMM seems to be an appropriate choice in our case.
In supervised learning, several prominent estimation methods (e.g., K-means or EM algorithms) can be used to estimate the density parameters of a GMM statistic model. In addition, the clustering task also involves the determination of an optimal number of clusters for GMM.

Since the two verification scores are not correlated, it is reasonable to use the diagonal covariance matrix. Error-free performance is achieved when only one mixture GMM is used.

After estimating the model parameters based on the development data, it is possible to draw a decision boundary to separate the two classes and to apply in test.

5.5 Simulation Results and Discussions

In this section, experimental results on the integration of SV and VIV will be presented. UBM adaptation is used for the training of speaker models for SV. The combined Cohort-and-World GMM-based anti-models are used for VIV. The three methods of score combination are compared in terms of efficiency and error rate. Their strength and weakness are discussed.

5.5.1 Voting Method

The development data described as in Section 4, Chapter 2 are used to derive thresholds. As mentioned before, there are two extreme criteria to accept the claimed identity: permissive test and restrictive test. In real-world applications, we prefer that a system work somewhere in-between these two extremes. Thus, two parameters that control the slope of the sigmoid function need to be determined. Based on our empirical study, they are set to be 5 and 2 respectively.

Shared Thresholds

In this experiment, the same thresholds are used for all speakers. There are two thresholds: one for the SV likelihoods and another for the VIV likelihoods. These shared thresholds are determined from the development data. The vari-
ation of false acceptance and false rejection rates with β (Defined in Eq. (5.6)) is shown as in Fig. 5.8. The operation point would be placed somewhere in the area depending on the specific requirement of applications.

![Diagram](image)

Figure 5.8: False acceptance and false rejection rates obtained using the voting method with shared thresholds. β varies between 0 and 1

In Table 5.1, results obtained with the shared thresholds are presented. It can be observed that, in the best case (labelled Voting 1), the improvement compared to VIV in the FA and the FR rates are 0.25% and 0.33%, respectively.

<table>
<thead>
<tr>
<th>Verification</th>
<th>β</th>
<th>FA Rate</th>
<th>FR Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>SV</td>
<td>N/A</td>
<td>2.11%</td>
<td>0.67%</td>
</tr>
<tr>
<td>VIV</td>
<td>N/A</td>
<td>0.59%</td>
<td>0.67%</td>
</tr>
<tr>
<td>Voting 1</td>
<td>0.66</td>
<td>0.338%</td>
<td>0.338%</td>
</tr>
<tr>
<td>Voting 2</td>
<td>0.85</td>
<td>0.03%</td>
<td>0.75%</td>
</tr>
<tr>
<td>Voting 3</td>
<td>0.55</td>
<td>0.90%</td>
<td>0.38%</td>
</tr>
</tbody>
</table>

Table 5.1: Results using voting method with shared thresholds

Speaker-specific Thresholds

In case that speaker-specific thresholds are used, there are two thresholds per speaker and two likelihoods to perform the dual test. The experiments con-
ducted are similar to those for shared thresholds. The results are given as in Fig. 5.9.

![Voting method with Individual Thresholds](image)

Figure 5.9: False acceptance and false rejection rates using the voting method with individual thresholds. \(\beta \) varies between 0 and 1

In Table 5.2, the results obtained with speaker-specific thresholds are given. It can be seen that, in the best case (labelled Voting 1), the improvement compared to VIV in the FA and the FR rates are are 0.067% and 1.0%, respectively.

<table>
<thead>
<tr>
<th>Verification</th>
<th>(\beta)</th>
<th>FA Rate</th>
<th>FR Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>SV</td>
<td>N/A</td>
<td>0.46%</td>
<td>2.0%</td>
</tr>
<tr>
<td>VIV</td>
<td>N/A</td>
<td>0.263%</td>
<td>1.33%</td>
</tr>
<tr>
<td>Voting 1</td>
<td>0.4</td>
<td>0.33%</td>
<td>0.33%</td>
</tr>
<tr>
<td>Voting 2</td>
<td>0.5</td>
<td>0.1%</td>
<td>0.6%</td>
</tr>
<tr>
<td>Voting 3</td>
<td>0.3</td>
<td>0.6%</td>
<td>0.3%</td>
</tr>
</tbody>
</table>

Table 5.2: Results obtained with the combined system on individual thresholds

On the whole, the voting method based on individual thresholds outperform that using shared thresholds. It does conform to our expectation. The voting method itself is simple and intuitive. Moreover, it allows the system to be flexibly configurable as we can trade the false rejection error with false acceptance error by simply adjusting the parameter \(\beta \).
5.5.2 Support Vector Machines

It is necessary to note that both development and evaluation set consist of client data and impostor data. The SV and VIV tests for each utterance produce a two-dimensional input.

A decision boundary is derived from development data and then applied to the evaluation data. Since it is a linearly separable problem, the decision boundary should be a straight line.

Fig. 5.10 shows scores distribution for the development data and the learned decision boundary. The points that fall between plus-plane and minus-plane are the so-called support vectors. Clearly, the two sets of data can be completely separated in this case. In other words, the error rate is zero for development data. However, it doesn’t imply that error-free performance can be achieved in general.

![Figure 5.10](image)

Figure 5.10: The learned decision boundary of SVMs and scatter plot of the development data

The number of support vectors and the margin width is determined by a user-defined penalty parameter that penalizes violation of the safety margin for
all development data. Generally, the larger the penalty parameter, the more narrow the margin width.

Figure 5.11: The learned decision boundary and scatter plot of the evaluation data

The learned decision boundary is applied to the evaluation data and the result is shown as in Fig. 5.11. It is observed that only one client data point labeled is misclassified. The false rejection error is 0.33% and the false acceptance error is 0%.

This result might serve as a true reflection of power of SVMs, especially for the linearly separable cases. However, since the decision boundary is learned from the development data, it will inevitably result in a rigid ratio between FAR and FRR. In other words, it is difficult to adjust the tradeoff between false acceptance error and false rejection error.

5.5.3 Gaussian-based Classifier

In this section, we present the experimental results of using the Gaussian classifier. The procedures are to learn a decision boundary from the development
data and then apply it to the evaluation. It is almost the same as SVM approach except that the decision boundary might be a curve instead of a straight line.

First, we need to train the GMMs for client and impostor classes using the EM algorithm based on the development data. In general, the numbers of centers and different covariance types (“diag” or “full”) affect the performance. From experimental results, it was found that one center for each class plus diagonal covariance matrix can provide error-free performance. However, this may not be a generalizable performance. If there are much more training data involved, we can use more centers and the full covariance matrix to represent the data distribution.

![Diagram](image)

Figure 5.12: The learned decision boundary of GMM-based classifier and scatter plot of the development data

Fig. 5.12 shows the score distribution of development data and the learned decision boundary. Along the decision boundary, the probability of belonging to the client data equals to the probability of belonging to the impostor data. We can use this decision boundary to classify new data points. Experimental results are illustrated in Fig. 5.13. The classification rate is 100% and this
testifies the excellence of applying parametric models into our case. GMM-based classifier approach also suffers from the same disadvantage encountered in SVMs approach. That is, it is difficult to adjust the ratio between FAR and FRR. The flexible adjustment is necessary in some application scenarios.

5.5.4 Discussions

In terms of the classification accuracy, GMM-based classifier performs the best and SVM-based classifier the second. Compared to the voting method, these two classifiers require the learning the decision boundary. It would not be a weak point since the learning process is conducted off-line. One disadvantage of these two approaches is their rigid ratio between FAR and FRR. In other words, once the decision boundaries are learned from the development data, no flexible tradeoff between false acceptance error and false rejection error will be available when they are applied in new data.

In [6], it was proposed to use the nonstandard support vector machine instead of the standard one. The scheme of nonstandard SVMs make it possible
to adjust the tradeoff between false acceptance error and false rejection error without loss of the generalization performance of traditional SVMs.

The voting method has the advantage of being more configurable. That is, the operating point of the system is easily controlled by a parameter α instead of having to adjust the whole set of thresholds. This makes it appealing to many applications.

5.6 Summary

In this chapter, three approaches to the integration of two verification systems have been studied and their fundamentals have been given. In particular, formulation and derivation of support vector machines for the simplest case have been provided in detail.

Experimental results on three methods have been presented. It turns out all of them are quite effective. Strength and weakness of these three methods have also been discussed. It has to be emphasized here that what we suggested for combining two verifiers is not a through treatment of combining classifiers but could serve as the milestone for the further research.
Chapter 6

Conclusions and Suggested Future Works

6.1 Conclusions

Biometric authentication systems are becoming indispensable for protecting life and property. Researches on biometric authentication are receiving great attention. With the recent technological advances, automatic authentication has become a practical reality. Among various biometrics, voice is one of the most natural and the least obtrusive biometric measures [49].

In this thesis, we have studied speaker authentication techniques for Cantonese, though the techniques are not language-specific by its nature. Identity-related information conveyed in a spoken utterance mainly encompasses voice characteristics and verbal content. Speaker verification (SV) and verbal information verification (VIV) are two techniques used to authenticate these information individually. A SV system has been developed using state-of-the-art techniques. A novel technique of modeling alternative hypotheses has been proposed for VIV. We have also sought to integrate SV and VIV to exploit their complementary.

Speaker variability affects the performance of an authentication system significantly. The likelihood scores computed for a true speaker varies from one trial to another, even if the same content is spoken. This makes it difficult to
set an optimal threshold to differentiate the clients from the impostors. Normalization techniques are applied to deal with the errors caused by such variability. Likelihood ratio test (LRT) is one of the most powerful methods for binary-decision problems. It has been successfully applied to both SV and VIV decisions. Within the framework of LRT, we need to build a model to represent alternative hypotheses.

In speaker verification, building such a model is referred to as background speaker modeling. Although there is no theoretical solution to this problem, many practically effective methods have been devised. Universal background modeling (UBM) is becoming the pre-dominant approach. In this case, all speakers share an all-in-one background model, i.e. the UBM, which is typically a Gaussian mixture model. The expectation-maximization (EM) algorithm is commonly used to estimate model parameters. All speaker models are adapted from this UBM. Experiments on 20 Cantonese speakers have been conducted to compare this method with the conventional Cohort method. The results showed that the UBM adaptation outperforms the Cohort modeling significantly. The best performance with an equal error rate (EER) of 1.5% is achieved using the UBM adaptation approach along with front-end endpoint detection.

In verbal information verification, modeling alternative hypotheses is known as anti-modeling. There are many considerations in the process of constructing anti-models, such as the way of pooling subword units, the model structure and the model complexity. Each of these issues has been addressed individually in the previous research. However, we don’t see a thorough discussion in literature on the design of anti-models. In this study, GMM-based anti-models are proposed to replace the conventional HMM-based ones. GMM does not impose any temporal constraint among the sound classes. Experiments have demonstrated the superior performance of the proposed method. Besides, GMM is computationally more efficient than HMM in both training and testing phase. This research has confirmed that GMM-base anti-modeling for VIV is a simple yet effective method.

Experimental results showed that the combined Cohort-and-World GMM-
based anti-models perform the best among all designs. The best performance achieved has an EER of 0.6%. It is found that the recognition accuracy of the target models did not much affect the VIV performance. We believe that our findings would be applicable to other languages, especially those with similar phonological structure, e.g. Mandarin.

Finally, for the integration of SV and VIV system, three methods have been evaluated. This is formulated as the problem of classifying two-dimensional patterns into two classes. Experimental results have demonstrated the effectiveness of these methods. In particular, by using the Gaussian-based classifier, error-free performance can be achieved. This indicates the overall excellence of the proposed Cantonese speaker authentication system.

6.2 Summary of Findings and Contributions of This Thesis

The major contributions from this research are summarized below:

- It is the first study in VIV for Cantonese dialect.
- Detailed discussions on anti-modeling for VIV have been provided, i.e. pooling training data for anti-models, model structure and model complexity.
- GMM as a better representation of VIV anti-models than the generic HMM. Its superiority has been testified by experimental study.
- Different ways of integrating SV and VIV at system level have been investigated. These include the intuitive Voting method, the popular Support Vector Machines and the generative Gaussian Classifier. Experimental results reflect the effectiveness of the integrated system. Error-free performance is achieved.
- The proposed method is not language specific and can be extended to other languages, such as Mandarin and English. Also, the anti-model
design for VIV can be directly applied in the general tasks of utterance verification.

- The VIV techniques have been used to verify the CUSV speech database. It turns out to be very convenient for postprocessing collected speech data since it releases great human effort from tedious validation work.

- A real-time Cantonese VIV demo system has been built using the proposed method.

6.3 Future Perspective

6.3.1 Integration of Keyword Spotting into VIV

A versatile VIV system should be able to handle flexible input styles rather than the rigid keyword sequences. This desirable feature will make the dialog more user-friendly and more intelligent. Keyword spotting technique can serve as a natural solution for this task. In general, ASR techniques can be applied in the front-end to generate a \(N \) best list of admissible candidates and utterance verification techniques can be used to do re-scoring and select the best one to be compared against the prescribed threshold.

6.3.2 Integration of Prosodic Information

Current speaker authentication techniques rely almost exclusively on low-level acoustic features extracted from speech signals. These features convey information about the physical traits of the speaker’s vocal apparatus. They are known to have a relatively high sensitivity to noise and channel mismatch. Humans use several levels of perceptual cues for speaker authentication. Examples of high-level information are speaking rate, pitch patterns, idiosyncratic word/phrase usage, laughter, etc [50]. These high-level features often represent learned traits of a speaker related to the speaker’s social status, personality, educational background, etc. Furthermore, they are assumed to be much more robust to noise.
and channel distortion. Nowadays, researcher have paid more and more attention on the extraction and utilization of these high-level perceptual cues, and explore the ways of making them contributing to original system. The SuperSID project at the 2002 JHU CLSP Summer Workshop was initiated for this purpose (See [50]).

Cantonese is well known for its tonal characteristics. Prosodic information plays an important role in large-vocabulary Cantonese speech recognition (LVCSR). Prosodic information are encoded in duration, intensity and pitch contour. Phonetic and prosodic information can be integrated and used for Cantonese speaker authentication.

For text-independent SV, phonetic and prosodic can be integrated at several levels. For VIV, prosodic information can be utilized to assist verification decision. Some pioneering works have been reported in [51]. It is generally believed that by properly fusing high- and low-level features, the performance of speaker authentication will be greatly improved.
Appendix A

A Cantonese VIV Demonstration System

In order to illustrate effectiveness and high performance of VIV technique, we build a real-time Cantonese VIV demo system. This demo system is run on the Windows platform and developed on CURec, the new speech recognition engine. Let’s show this demo through an example.

First, we have built a database for storing the users’ profiles. Each user is asked to provide 18 pieces of personal information such as “What is your telephone number?” Each of them is assigned an user id from 000 to 050. During the testing phase, the major interface of this demo system is shown as in Fig. A.1. When an user tries to log in the system, he/she will claim his/her identity by presenting the user id and click “Login”. There are also other buttons on the main interface which are used for automatic registration and for control by system administrator.

After that, a question will be randomly selected from the question pool that is constructed based on the 18 pieces of pre-recorded personal information (Fig. A.2). There is a confidence bar that is used to indicate how many questions the claimed user has correctly responded. Originally, the bar is fully charged. After clicking the “Start Recording” button, the user’s response will be recorded and passed through the VIV system. A utterance-level confidence score will be generated for this answer. In order to make the system more practical, we set
two thresholds for the utterance-level confidence score. One is at about 0.72 and another is at about 0.55. If the utterance-level confidence score is lower than 0.55, this answer will be rejected immediately and the system will proceed to ask next randomly selected question. If the second question is not satisfied again, the claimed user will be rejected by the system. If the utterance-level confidence score is higher than 0.55 and lower than 0.72, the user will be given a second chance to answer the same question. If it is higher than 0.72, the answer will be accepted immediately. The user has to answer at least 2 questions correctly to pass the system. Correspondingly, when an answer is rejected, the confidence bar will drop by 30%. When it drops to 0, the user will be rejected. When the user answers one question rightly, the bar will remain unchange or increase by 30%.

Fig. A.3 shows the results in detail about the verification process. The
“Hint” shows the answer expected by the system. There are other text boxes that recorded the decision results such as “number of accepted” and “Decision”. All the details will be hidden from users.

![Figure A.3: The detailed interface](image)

In order to allow flexible response to the question, keyword spotting technique is integrated into the demo system. Instead of forced alignment, speech recognition is performed given the task grammar that consists of garbage or filler models and the key phrase. The task grammar is defined as in Fig. A.4

![Figure A.4: The task grammar used in keyword spotting](image)
By using this grammar, users may respond to the system more freely. For example, the answer could be “I graduated from the Chinese University of Hong Kong” instead of the rigid “the Chinese University of Hong Kong”. We have tested on the new system and results are satisfactory.

Target models used in this demo system are fixed as right context-dependent Initial-Final models and anti-models are the proposed GMM-based ones.
Bibliography

