CHAPTER 4: ATMOSPHERIC TRANSPORT

Forces in the atmosphere:

- Gravity \(g \)
- Pressure-gradient \(\ddot{a}_p = -\left(\frac{1}{\rho}\right) \nabla P \)
- Coriolis \(\gamma_c = 2\omega v \sin \lambda \) to R of direction of motion (NH) or L (SH)
- Friction \(\ddot{a}_f = -kv \)

Equilibrium of forces:

In vertical: barometric law

In horizontal: geostrophic flow parallel to isobars

In horizontal, near surface: flow tilted to region of low pressure
CIRCULATIONS AROUND HIGHS AND LOWS

Northern hemisphere

Surface High = fine weather;
Surface Low = precipitation

CONVERGENCE DIVERGENCE
THE HADLEY CIRCULATION (1735): global sea breeze

Explains:
• Intertropical Convergence Zone (ITCZ)
• Wet tropics, dry poles

Problem: does not account for Coriolis force. Meridional transport of air between Equator and poles would result in unstable longitudinal motion.
TROPICAL HADLEY CELL

- Easterly “trade winds” in the tropics at low altitudes
- Subtropical anticyclones at about 30° latitude

Fig. 4-11 Northern hemisphere Hadley cell.
CLIMATOLOGICAL SURFACE WINDS AND PRESSURES
(January)
CLIMATOLOGICAL SURFACE WINDS AND PRESSURES (July)
TIME SCALES FOR HORIZONTAL TRANSPORT (TROPOSPHERE)

- 2 weeks
- 1-2 months
- 1 year

(a) January
VERTICAL TRANSPORT: BUOYANCY

Balance of forces:

\[\tilde{a}_{\text{buoyancy}} = \tilde{a}_p - g \]
\[= \frac{\rho' - \rho}{\rho} g \]

Note: Barometric law assumed a neutrally buoyant atmosphere with \(T = T' \)

\(\left(\tilde{a}_p = -g \right) \)

\(T \neq T' \) would produce buoyant acceleration
Consider an air parcel at z lifted to $z+dz$ and released. It cools upon lifting (expansion). Assuming lifting to be adiabatic, the cooling follows the adiabatic lapse rate Γ:

$$\Gamma = -\frac{dT}{dz} = \frac{g}{C_p} = 9.8 \text{ K km}^{-1}$$

What happens following release depends on the local lapse rate $-dT_{\text{ATM}}/dz$:

- $-dT_{\text{ATM}}/dz > \Gamma \Rightarrow$ upward buoyancy amplifies initial perturbation: atmosphere is **unstable**
- $-dT_{\text{ATM}}/dz = \Gamma \Rightarrow$ zero buoyancy does not alter perturbation: atmosphere is **neutral**
- $-dT_{\text{ATM}}/dz < \Gamma \Rightarrow$ downward buoyancy relaxes initial perturbation: atmosphere is **stable**
- $dT_{\text{ATM}}/dz > 0$ ("inversion"): very stable

The stability of the atmosphere against vertical mixing is solely determined by its lapse rate.
Fig. 4-19 Vertical profiles of temperature T, potential temperature θ, water vapor (dew point), and ozone measured by aircraft in early afternoon in August over eastern Canada.
WHAT DETERMINES THE LAPSE RATE OF THE ATMOSPHERE?

- An atmosphere left to evolve adiabatically from an initial state would eventually tend to neutral conditions (-dT/dz = \(\Gamma \)) at equilibrium.
- Solar heating of surface and radiative cooling from the atmosphere disrupts that equilibrium and produces an unstable atmosphere:

\[
\begin{align*}
\text{Initial equilibrium state: } & - \frac{dT}{dz} = \Gamma \\
\text{Solar heating of surface/radiative cooling of air: } & \text{unstable atmosphere} \\
\text{buoyant motions relax unstable atmosphere back towards } & -\frac{dT}{dz} = \Gamma
\end{align*}
\]

- Fast vertical mixing in an unstable atmosphere maintains the lapse rate to \(\Gamma \).
Observation of \(-\frac{dT}{dz} = \Gamma\) is sure indicator of an unstable atmosphere.
IN CLOUDY AIR PARCEL, HEAT RELEASE FROM H_2O CONDENSATION MODIFIES Γ

Wet adiabatic lapse rate $\Gamma_w = 2-7 \text{ K km}^{-1}$

“Latent” heat release as H_2O condenses

$\Gamma = 9.8 \text{ K km}^{-1}$

RH $> 100\%$: Cloud forms

RH 100%
VERTICAL PROFILE OF TEMPERATURE
Mean values for 30°N, March

Radiative cooling (ch.7)

- 3 K km⁻¹

- 6.5 K km⁻¹

Radiative heating:
\[\text{O}_3 + h\nu \Rightarrow \text{O}_2 + \text{O} \]
\[\text{O} + \text{O}_2 + \text{M} \Rightarrow \text{O}_3 + \text{M} \]

Latent heat release

Surface heating
DIURNAL CYCLE OF SURFACE HEATING/COOLING: ventilation of urban pollution
Fig. 4-17 Formation of a subsidence inversion. Temperature profiles on the right panel are shown for the upwelling region A (thin line) and the subsiding region B (bold line). It is assumed for purposes of this illustration that regions A and B have the same surface temperature T_0. The air column extending up to the subsidence inversion is commonly called the planetary boundary layer (PBL).
FRONTS

WARM FRONT:
- Warm Air
- Cold Air
- Wind
- Front boundary; inversion

COLD FRONT:
- Cold Air
- Warm Air
- Wind
- Inversion
TYPICAL TIME SCALES FOR VERTICAL MIXING

- Estimate time Δt to travel Δz by turbulent diffusion:

$$\Delta t = \frac{(\Delta z)^2}{2K_z}$$

with $K_z \sim 10^5 \text{cm}^2\text{s}^{-1}$