Southern Sierra CZO update
Roger Bales, UC Merced

Science directions
Infrastructure update
Research highlights
SSCZO team
Data
Next steps

Research focus: water balance, nutrient cycling & weathering across the rain-snow transition – soil moisture as integrating variable
Southern Sierra CZO update
Roger Bales, UC Merced

- Science directions
- Infrastructure update
- Research highlights
- SSCZO team
- Data
- Next steps

Conceptual model: bi-directional links between landscape/climate variability & water/material fluxes across the rain-snow transition
How is the response of soil moisture to snowmelt & rainfall controlled by variability across the landscape, & how do these responses both reflect & constrain streamflow & evapotranspiration?
What is the process linkage between soil moisture & topographic variability, soil formation & weathering?
How does vegetation/ecosystem distribution & function (species, plant functional type, production) vary with climate (elevation); & what physiological mechanisms are controlling?
How do vegetation attributes influence land-atmosphere exchange & catchment cycling of water, energy, CO₂?
What is the link between soil heterogeneity, water fluxes & nutrient availability?
Southern Sierra CZO is located at elevations 1750-2100 m, across the rain-snow transition, in a very productive mixed-conifer forest, with extended measurement nodes at elevations 400-2700 m.
CZO measurements are centered around the Kings R. basin, N fork
Wolverton catchments, 2100-2700 m, lies in the snow zone, above the 1750-2100 m elevation Providence catchments.
Providence Creek – main CZO instrument cluster

3 headwater catchments w/stream gauges & water-quality measurements
2 met stations
60-m tall flux tower
60-node wireless embedded sensor network
214 EC-TM sensors for volumetric water content
113 MPS sensors for matric potential
57 snow-depth sensors
Meadow piezometers & wells
Sap-flow sensors
Flux towers along an elevation gradient, 400-2700 m, extend the core CZO instrument cluster from water-limited to temperature-limited ecosystems

4 towers in place now, 3 more planned under NEON (2 co-located)
San Joaquin Experimental range

Elev 400 m
T_{ave} 14.4º C
Annual rain: 0.5 m
0 dy snow
6 mo growing, water limited

Oak/Pine savannah – Gray pine & live oak w/ exotic grasses
Soaproot saddle

Elev 1200 m
T_{ave} 10.9^\circ C

Annual precip: 0.9 m
11 dy snow
Possible long growing season & high productivity

Dense mix of smallish Ponderosa pine & oak, w/ many shrubs
Site may be recovering from logging/fire/beetles
Elev 2100 m
$T_{ave} 8.9^\circ C$
Annual precip: 1.0 m
130 dy snow
12 mo growing season – neither cold nor drought limited

White fir w/ sugar & other pines, incense cedar & patchy, dense shrubs
Elev 2700 m
T_{ave} 4.1$^\circ$C
Annual precip: 1.1 m
184 dy snow
~5 month growing season – cold limited

Mostly Lodgepole pine w/ scattered western white pine & red fir
Very high annual & summer ET at P301

High summer values depend on deep root extraction of water.

Happy elev for trees – T & precip just right.

Soils hold snowmelt over summer.
How much water can soils hold vs. elev?

Little rain, 5/09-10/09

730 mm Et, 10/08-10/09
430 mm Et, 5/10-10/10
Total profile soil water storage – upper vs. lower met
(soil texture effect)

Lower – finer soils
Upper – coarser textured soils
Physiographic controls over snow distribution

Snow depletion links w/ soil drying at multiple scales

Snowpack & snowmelt control the timing of soil drying
Climatic, physiographic & vegetation controls on water yield

Mean elevations for 8 catchments Modeling in progress

Decreasing temperature
Increasing snow fraction
Decreasing LAI
Coarser soils
Tracking of soil moisture & sap flux

Change in Soil Moisture vs. Sap Flux

- ET decreasing from 1 to 0.5 mm/d
- ET decreasing towards 0.1 mm/d
- ~ 20 cm precip

Putting these together w/ tower data in progress
Do changes in the timing of water availability affect microbial community structure & annual rates of biogeochemical cycling in mountain soils?

Reduced snowcover on S facing apparently not a factor in decomposition rate?

P = 0.001 in one-way ANOVA
Nutrient hot spots

Hot spots, i.e. statistical outliers, common for inorganic species in both O horizon & mineral soil

Infiltration of nutrient-rich runoff in preferential flowpaths creates the hot spots

Runoff through O horizon occurs due to lack of roots

Hotspots in mineral soil not co-located with hotspots in overlying O horizon

Hotspots increase litter decomposition rates?
Providence erosion rates

- Sediment basin
- Headcut

![Map of Providence erosion rates with labels for P304, rock glades, and locations marked with 'N' and 'G'.]

![Graph showing estimated sediment delivery rate (t km⁻² yr⁻¹) with data points from Dixon et al. 2009 and range of rates for bare granite from cosmogenic nuclides.]

- Dixon et al. 2009
- Range of rates for bare granite from cosmogenic nuclides
- Sediment yields from sediment traps

![Image of a stream with a headcut and sediment basin.]

Soil moisture & sap flux measurement design using RHESSys & cluster analysis – catchment P300

Model vs. initial measurements – qualitative agreement

Initial plots mainly in 1-3
Added plots in 4-6
Prototype embedded sensor network, 2008-present

Randomized channel-hopping protocol
Self-assembling redundant mesh
Near 100% transmission w/ RSSI > -73 dBm, i.e. spacing of ≤ 100 m

Received signal strength (RSSI), log scale
Packet delivery ratio
Wireless network layout & equipment

- Sensing node
- Hopper node

Node w/ antenna

Embedded base station
SSCZO Co-PIs & students from 8 campuses; many more collaborators

D. Johnson, C. Woodward

J. Hopmans, P. Hartsough
B. Houlton, S. Enders
T. O’Geen

S. Glaser, B. Kerkz

R. Bales, P. Kirchner
M. Conklin, R. Lucas
S. Hart, J. Blankenship
A. Behre, E. Stacy

M. Goulden, A. Kelly

C. Tague, K. Son

C. Riebe, B. Jessup

N. Molotch, K. Musselman
Data availability through digital library

Level 2 data from core field measurements made available by water year: snow, soil moisture, temperatures, flux tower
Current-year level 1 data available by request
Investigator-specific data available as per CZO & NSF data policy
Next steps

– End of yr 3 – some mature research & some data streams just initiated
– Most students started in yr 2
– Several papers submitted or close
– Fall AGU: 16 abstracts
– LIDAR products – spring 2011
– Single-tree experiment replicated this summer
– Instrument cluster – basis for developing broader water information system in Sierra Nevada

http://snri.ucmerced.edu/CZO